Aims/hypothesis: Regular exercise is at the cornerstone of care in type 1 diabetes. However, relative hyperinsulinaemia and a blunted glucagon response to exercise promote hypoglycaemia. Recently, a selective antagonist of somatostatin receptor 2, PRL-2903, was shown to improve glucagon counterregulation to hypoglycaemia in resting streptozotocin-induced diabetic rats. The aim of this study was to test the efficacy of PRL-2903 in enhancing glucagon counterregulation during repeated hyperinsulinaemic exercise.

Methods: Diabetic rats performed daily exercise for 1 week and were then exposed to saline (154 mmol/l NaCl) or PRL-2903, 10 mg/kg, before hyperinsulinaemic exercise on two separate occasions spaced 1 day apart. In the following week, animals crossed over to the alternate treatment for a third hyperinsulinaemic exercise protocol.

Results: Liver glycogen content was lower in diabetic rats compared with control rats, despite daily insulin therapy (p < 0.05). Glucagon levels failed to increase during exercise with saline but increased three-to-six fold with PRL-2903 (all p < 0.05). Glucose concentrations tended to be higher during exercise and early recovery with PRL-2903 on both days of treatment; this difference did not achieve statistical significance (p > 0.05).

Conclusions/interpretation: PRL-2903 improves glucagon counterregulation during exercise. However, liver glycogen stores or other factors limit the prevention of exercise-induced hypoglycaemia in rats with streptozotocin-induced diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-016-3953-0DOI Listing

Publication Analysis

Top Keywords

diabetic rats
12
somatostatin receptor
8
glucagon counterregulation
8
hyperinsulinaemic exercise
8
exercise
5
glucagon
4
glucagon responses
4
responses exercise-induced
4
exercise-induced hypoglycaemia
4
hypoglycaemia improved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!