Running has been shown to improve depressive symptoms when used as an adjunct to medication. However, the mechanisms underlying the antidepressant effects of running are not fully understood. Changes of capillaries in white matter have been discovered in clinical patients and depression model rats. Considering the important part of white matter in depression, running may cause capillary structural changes in white matter. Chronic unpredictable stress (CUS) rats were provided with a 4-week running exercise (from the fifth week to the eighth week) for 20 minutes each day for 5 consecutive days each week. Anhedonia was measured by a behavior test. Furthermore, capillary changes were investigated in the control group, the CUS/Standard group, and the CUS/Running group using stereological methods. The 4-week running increased sucrose consumption significantly in the CUS/Running group and had significant effects on the total volume, total length, and total surface area of the capillaries in the white matter of depression rats. These results demonstrated that exercise-induced protection of the capillaries in white matter might be one of the structural bases for the exercise-induced treatment of depression. It might provide important parameters for further study of the vascular mechanisms of depression and a new research direction for the development of clinical antidepressant means. J. Comp. Neurol. 524:3577-3586, 2016. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.24017 | DOI Listing |
Curr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
Biomed Opt Express
January 2025
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
Multiphoton fluorescence microscopy (MFM), renowned for its noninvasiveness and high spatiotemporal resolution, is extensively applied in brain structure imaging in vivo. Three-photon fluorescence (3PF) imaging, excited at the NIR-III window, can penetrate the deepest mouse cerebrovascular. Evans blue, a substance known for its low toxicity, high water solubility, and resistance to metabolism, is frequently employed to assess blood-brain barrier (BBB) permeability.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
December 2024
Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China.
White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown.
View Article and Find Full Text PDFTrop Med Health
January 2025
Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Neurobrucellosis, a serious central nervous system infection caused by Brucella species, presents significant challenges due to its diverse clinical manifestations and the risk of long-term complications and poor outcomes. Identifying predictors of adverse outcomes is critical for improving patient management and overall prognosis.
Objectives: This study aimed to evaluate the long-term morbidity and mortality associated with neurobrucellosis and to identify key predictors of adverse outcomes.
J Neuroimaging
January 2025
Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
Background And Purpose: MRI is crucial for multiple sclerosis (MS), but the relative value of portable ultra-low field MRI (pULF-MRI), a technology that holds promise for extending access to MRI, is unknown. We assessed white matter lesion (WML) detection on pULF-MRI compared to high-field MRI (HF-MRI), focusing on blinded assessments, assessor self-training, and multiplanar acquisitions.
Methods: Fifty-five adults with MS underwent pULF-MRI following their HF-MRI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!