The synthesis of eco-friendly nanoparticles is evergreen branch of nanoscience with a growing number of biomedical implications. In this study, we investigated the synthesis of polydisperse and stable silver nanoparticles (AgNP) using a cheap leaf extract of Malva sylvestris (Malvaceae). Bio-reduced AgNP were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The acute toxicity of M. sylvestris leaf extract and green-synthesized AgNP was evaluated against larvae of the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the filariasis vector Culex quinquefasciatus. Compared to the leaf aqueous extract, AgNP showed higher toxicity against A. stephensi, A. aegypti, and C. quinquefasciatus with LC50 values of 10.33, 11.23, and 12.19 μg/mL, respectively. Green-synthesized AgNP were found safer to non-target organisms Diplonychus indicus and Gambusia affinis, with respective LC50 values ranging from 813.16 to 1044.52 μg/mL. Overall, this research firstly shed light on the mosquitocidal potential of M. sylvestris, a potential bio-resource for rapid, cheap and effective synthesis of polydisperse and highly stable silver nanocrystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00436-016-5038-x | DOI Listing |
ACS Appl Nano Mater
March 2024
Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Photon-counting mammography is an emerging modality that allows for spectral imaging and provides a differentiation of material compositions. The development of photon-counting mammography-specific contrast agents has yet to be explored. In this study, the contrast, sensitivity, and organ dose between silver sulfide nanoparticles (AgS-NPs) and a clinically approved iodinated agent (iopamidol) were investigated using a contrast-embedded gradient ramp phantom and a prototype scanner.
View Article and Find Full Text PDFFront Chem
January 2025
Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
Microorganisms are becoming resistant to drugs and antimicrobials, making it a significantly critical global issue. Nosocomial infections are resulting in alarmingly increasing rates of morbidity and mortality. Plant derived compounds hold numerous antimicrobial properties, making them a very capable source to counteract resistant microbial strains.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China. Electronic address:
This study investigated endophytic fungi isolated from the medicinal plant Panax notoginseng. Among these, the endophytic fungus SQ3, identified as Chaetomium globosum, was capable of reducing silver ions to form metallic silver nanoparticles. The green-synthesized silver nanoparticles (AgNPs) presented a distinct surface plasmon resonance peak at 424 nm, with particle sizes between 2.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!