Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4830986 | PMC |
http://dx.doi.org/10.1038/srep24427 | DOI Listing |
Ann Glob Health
January 2025
Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104 USA.
Abandoned asbestos mines are a potential source of environmental contamination and exposure for nearby residents. The asbestos exposure risk may persist even after the cessation of mining activity if the mine is not properly closed. One such abandoned mine is at Roro Hills in the Jharkhand state of India.
View Article and Find Full Text PDFLife (Basel)
January 2025
Biology Department, College of Science, King Khalid University [KKU], Abha 61413, Saudi Arabia.
This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.
View Article and Find Full Text PDFJ Radiol Prot
January 2025
School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA.
Historically, radiation exposure to mineral sands workers arose primarily from intake of thorium associated with monazite dust generated in mineral separation plants. Research investigations in the 1990s provided greater insight into the characteristics of inhaled thorium ore dust and bioassay studies inferred that some workers had accumulated significant lung burdens of thorium. Recent changes to biokinetic models have increased the radiation dose assessed to arise from thorium intake, raising questions on the appropriateness of current assumptions used in exposure assessment and feasibility of further bioassay research.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:
Coal mines generate significant amounts of dust during production, transportation, and stockpiling, leading to health hazards and environmental pollution. To address the inefficiencies and environmental impact of current chemical dust suppressants, a novel dust suppressant was developed utilizing cellulose derived from Napier grass (NG), modified through carboxymethylation, and supplemented with polyvinyl alcohol (PVA) and polyacrylamide (PAM). Orthogonal experiments identified the optimal ratio of sodium carboxymethyl cellulose (CMC), PAM, PVA, and octyl phenol polyoxyethylene ether (JFC-1) as 1:0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!