Objectives/hypothesis: Artificial tracheas prepared using a collagen sponge and polypropylene mesh have been implanted in patients who received tracheal resections, but epithelialization in the reconstructed area is slow. We determined the optimal bovine atelocollagen concentration necessary for the rapid and complete tracheal epithelial coverage of collagen sponge implants.
Study Design: Preliminary animal experiment.
Methods: Collagen sponges were prepared using lyophilizing 0.5%, 0.7%, and 1.0% atelocollagen solutions (0.5%, 0.7%, and 1.0% sponges) and were analyzed using scanning electron microscopy. Partial tracheal defects were prepared in rabbits and reconstructed using sponges. Epithelial regeneration in the reconstructed area was evaluated by endoscopic, histological, and scanning electron microscope analyses.
Results: All sponges had a membranous structural framework, and numerous fibrous structures filled the spaces within the framework in the 0.5% sponges. The membranous structure in the 0.7% sponges branched at many points, and intermembrane spaces were frequently observed. Conversely, the membranous structure in the 1.0% sponges was relatively continuous, thick, and closely arranged. Two weeks after implantation, tracheal defects were entirely covered with epithelium in two of the four and three of the four of the 0.5% and 0.7% sponge-implanted rabbits, respectively. The collagen sponges remained exposed to the tracheal lumen in four of the four rabbits in the 1.0% sponge group. Ciliogenesis in the center of the epithelialized region was detected only in the 0.7% sponge group.
Conclusion: Collagen sponges prepared from various concentrations of bovine atelocollagen have different structures. Complete epithelial coverage was achieved in more rabbits implanted with sponges prepared using the 0.7% bovine atelocollagen solution than in those implanted with sponges prepared from the 0.5% and 1.0% solutions.
Level Of Evidence: NA Laryngoscope, 126:E396-E403, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lary.25989 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Menoufia, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt. Electronic address:
Silver sulfadiazine (SSD) is a widely used antibacterial agent for burn wound treatment owing to its capability in re-epithelialization and wound healing. However, due to its low solubility, the need for an effective drug delivery system is mandatory. This study aimed to optimize SSD nanostructured lipid-based carriers (NLCs), incorporated in a collagen sponge form as an innovative topical dosage form for effective burn wound treatment.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan.
Background/purpose: Oral submucous fibrosis (OSF) is a premalignant condition of the oral cavity, and its pathogenesis remains largely unknown. A multitude of non-coding RNAs are aberrantly expressed in OSF, and their implication for the development of OSF is a matter meriting investigation.
Materials And Methods: The functional role of long non-coding RNA NCK1-AS1 in myofibroblast activation of fibrotic buccal mucosal fibroblasts (fBMFs) derived from OSF tissues was assessed.
J Dent Sci
January 2025
Department of Oral Surgery, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
Background/purpose: Autologous dentin materials are among the most promising bone substitutes for preventing osseous defects on the distal side of the lower second molar. This study aimed to investigate the effects of autologous demineralized dentin matrix on postoperative complications and wound healing after lower third molar surgery.
Materials And Methods: Thirteen patients with bilateral symmetrical lower third molars participated in this split-mouth randomized clinical trial.
Polymers (Basel)
January 2025
Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented.
View Article and Find Full Text PDFMar Drugs
December 2024
CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!