Somatic mutations are the driving force of cancer genome evolution. The rate of somatic mutations appears to be greatly variable across the genome due to variations in chromatin organization, DNA accessibility and replication timing. However, other variables that may influence the mutation rate locally are unknown, such as a role for DNA-binding proteins, for example. Here we demonstrate that the rate of somatic mutations in melanomas is highly increased at active transcription factor binding sites and nucleosome embedded DNA, compared to their flanking regions. Using recently available excision-repair sequencing (XR-seq) data, we show that the higher mutation rate at these sites is caused by a decrease of the levels of nucleotide excision repair (NER) activity. Our work demonstrates that DNA-bound proteins interfere with the NER machinery, which results in an increased rate of DNA mutations at the protein binding sites. This finding has important implications for our understanding of mutational and DNA repair processes and in the identification of cancer driver mutations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature17661 | DOI Listing |
PLoS Genet
January 2025
Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia.
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.
View Article and Find Full Text PDFJ Am Coll Surg
January 2025
Department of Surgery, University of Kentucky Medical Center, Lexington, KY.
Background: Colon cancer is a leading cause of mortality in Appalachian Kentucky. Studies suggest that the microbiome may influence cancer outcomes. We investigate differential gene expression, the tumor microbiome, and the association between the two as potential drivers of disparities in colon cancer outcomes.
View Article and Find Full Text PDFUnlabelled: The impact of cancer driving mutations in regulating immunosurveillance throughout tumor development remains poorly understood. To better understand the contribution of tumor genotype to immunosurveillance, we generated and validated lentiviral vectors that create an epi-allelic series of increasingly immunogenic neoantigens. This vector system is compatible with autochthonous Cre-regulated cancer models, CRISPR/Cas9-mediated somatic genome editing, and tumor barcoding.
View Article and Find Full Text PDFAutoimmunity affects 10% of the population. Within this umbrella, autoantibody-mediated diseases targeting one autoantigen provide a unique opportunity to comprehensively understand the developmental pathway of disease-causing B cells and autoantibodies. While such autoreactivities are believed to be generated during germinal centre reactions, the roles of earlier immune checkpoints in autoantigen-specific B cell tolerance are poorly understood.
View Article and Find Full Text PDFBackground: Clonal hematopoiesis of indeterminate potential (CHIP) is the age-related presence of expanded somatic clones secondary to leukemogenic driver mutations and is associated with cardiovascular (CV) disease and mortality. We sought to evaluate relationships between CHIP with cardiometabolic diseases and incident outcomes in high-risk individuals.
Methods: CHIP genotyping was performed in 8469 individuals referred for cardiac catheterization at Duke University (CATHGEN study) to identify variants present at a variant allele fraction (VAF) ≥2%.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!