Nanostructured nickel oxide samples with crystallite sizes in the range 32-45 nm are synthesized through a facile chemical route using nickel chloride and ethanol amine as the starting materials. The analysis of the antioxidant activity and DC conductivity of the NiO samples confirmed the presence of both Ni(2+) and O(2-) vacancies. The temperature dependent magnetization studies of the samples are done using a Vibrating Sample Magnetometer in the range 20-300 K. The core-shell magnetic structure of the NiO nanoparticles with an antiferromagnetic core and a spin-glass shell is revealed from the zero field cooled and field cooled magnetization studies of the samples. The dependence of uncompensated moments on total spins contradicts Neel's models and is found to vary directly with O(2-) vacancy concentration. The ferromagnetic response of NiO samples due to the interaction between the antiferromagnetic core and the ferromagnetic shell is evident from the magnetic hysteresis studies in the temperature range 20-300 K. The ferromagnetic response is traced to the concentration of O(2-) vacancies, which act as donor impurities and mediate the alignment of magnetic moments associated with Ni(2+) vacancies. The decrease of ferromagnetic contribution upon annealing is explained by the decrease in the concentration of O(2-) vacancies which caused a reduction in the number of magnetic polarons and hence the effective magnetization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp03710g | DOI Listing |
J Hazard Mater
January 2025
College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu, Sichuan 610065, China; Industrial Technology Research Institute, Sichuan University, Yibin 644004, China. Electronic address:
This study investigates the critical relationship between the crystal phase, morphology, and photocatalytic activity of MnO. The δ-MnO nanosheets, characterized by multiple exposed crystal planes forming junctions, exhibit optimized optical and electrical properties. Oxygen vacancy concentrations were observed in the order δ-MnO > γ-MnO > α-MnO, with corresponding increases in band gap width from 1.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
GuangDong Engineering Technology Research Center of Advanced Polymer Synthesis, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Guangdong 515063 China. Electronic address:
Fenton technology faces significant challenges due to external HO dependency and inadequate Fe regeneration. Constructing a photocatalytic self-Fenton system is a promising strategy, but it is hindered by slow charge dynamics and low mass transfer of reactant ions. Here, we present a multi-engineering co-modified carbon nitride (OCN) for efficient photocatalytic self-Fenton reactions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.
View Article and Find Full Text PDFJ Mol Model
January 2025
State Key Laboratory of Polyolefins and Catalysis, Shanghai, 200062, People's Republic of China.
Context: This study aims to reveal the reaction mechanisms of H and O on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H and O react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!