Excessive use of antibiotics has posed two major challenges in public healthcare. One of them is associated with the development of multi-drug resistance while the other one is linked to side effects. In the present investigation, the authors report an innovative approach to tackle the challenges of multi-drug resistance and acute toxicity of antibiotics by using antibiotics adsorbed metal nanoparticles. Monodisperse silver nanoparticles (SNPs) have been synthesised by two-step process. In the first step, SNPs were prepared by chemical reduction of AgNO3 with oleylamine and in the second step, oleylamine capped SNPs were phase-transferred into an aqueous medium by ligand exchange. Antibiotics - tetracycline and kanamycin were further adsorbed on the surface of SNPs. Antibacterial activities of SNPs and antibiotic adsorbed SNPs have been investigated on gram-positive (Staphylococcus aureus, Bacillus megaterium, Bacillus subtilis), and gram-negative (Proteus vulgaris, Shigella sonnei, Pseudomonas fluorescens) bacterial strains. Synergistic effect of SNPs on antibacterial activities of tetracycline and kanamycin has been observed. Biocidal activity of tetracycline is improved by 0-346% when adsorbed on SNPs; while for kanamycin, the improvement is 110-289%. This synergistic effect of SNPs on biocidal activities of antibiotics may be helpful in reducing their effective dosages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676349 | PMC |
http://dx.doi.org/10.1049/iet-nbt.2015.0005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!