A revised translating bed total body irradiation (TBI) technique is developed for shielding organs at risk (lungs) to tolerance dose limits, and optimizing dose distribution in three dimensions (3D) using an asymmetrically-adjusted, dynamic multileaf collimator. We present a dosimetric comparison of this technique with a previously developed symmetric MLC-based TBI technique. An anthropomor-phic RANDO phantom is CT scanned with 3 mm slice thickness. Radiological depths (RD) are calculated on individual CT slices along the divergent ray lines. Asymmetric MLC apertures are defined every 9 mm over the phantom length in the craniocaudal direction. Individual asymmetric MLC leaf positions are optimized based on RD values of all slices for uniform dose distributions. Dose calculations are performed in the Eclipse treatment planning system over these optimized MLC apertures. Dose uniformity along midline of the RANDO phantom is within the confidence limit (CL) of 2.1% (with a confidence probability p = 0.065). The issue of over- and underdose at the interfaces that is observed when symmetric MLC apertures are used is reduced from more than ± 4% to less than ± 1.5% with asymmetric MLC apertures. Lungs are shielded by 20%, 30%, and 40% of the prescribed dose by adjusting the MLC apertures. Dose-volume histogram analysis confirms that the revised technique provides effective lung shielding, as well as a homogeneous dose coverage to the whole body. The asymmetric technique also reduces hot and cold spots at lung-tissue interfaces compared to previous symmetric MLC-based TBI technique. MLC-based shielding of OARs eliminates the need to fabricate and setup cumbersome patient-specific physical blocks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875554PMC
http://dx.doi.org/10.1120/jacmp.v17i2.5951DOI Listing

Publication Analysis

Top Keywords

mlc apertures
24
asymmetric mlc
16
tbi technique
12
translating bed
8
bed total
8
total body
8
body irradiation
8
lung shielding
8
dose
8
technique developed
8

Similar Publications

Intrafraction motion in intra-cranial multi-target stereotactic radiosurgery plans: A multi-institutional investigation on robustness.

Phys Med

January 2025

Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; St George Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Physics, University of Sydney, Camperdown, NSW, Australia.

Purpose: Even with modern immobilisation devices, some amount of intrafraction patient motion is likely to occur during stereotactic radiosurgery (SRS) delivery. The aim of this work was to investigate how robustness of plans to intrafraction motion is affected by plan geometry and complexity.

Methods: In 2018, the Trans-Tasman Radiation Oncology Group conducted a multiple-target SRS international planning challenge, the data from which was utilised in this study.

View Article and Find Full Text PDF

Dosimetric optimization for dynamic mixed beam arc therapy (DYMBARC).

Med Phys

January 2025

Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.

Background: Non-coplanarity and mixed beam modality could be combined to further enhance dosimetric treatment plan quality. We introduce dynamic mixed beam arc therapy (DYMBARC) as an innovative technique that combines non-coplanar photon and electron arcs, dynamic gantry and collimator rotations, and intensity modulation with photon multileaf collimator (MLC). However, finding favorable beam directions for DYMBARC is challenging due to the large solution space, machine component constraints, and optimization parameters, posing a highly non-convex optimization problem.

View Article and Find Full Text PDF

With advancements in medical technology, stereotactic radiosurgery (SRS) has become an essential option for treating benign intracranial tumors. Due to its minimal side effects and high local control rate, SRS is widely applied. This paper evaluates the plan quality and secondary cancer risk (SCR) in patients with benign intracranial tumors treated with the CyberKnife M6 system.

View Article and Find Full Text PDF

Machine learning and deep learning prediction of patient specific quality assurance in breast IMRT radiotherapy plans using Halcyon specific complexity indices.

Radiother Oncol

November 2024

Medical Physics Department, Centre François Baclesse, 14000 Caen, France; Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, F-14000 Caen, France. Electronic address:

Introduction: New radiotherapy machines such as Halcyon are capable of delivering dose-rate of 600 monitor-units per minute, allowing large numbers of patients treated per day. However, patient-specific quality assurance (QA) is still required, which dramatically decrease machine availability. Innovative artificial intelligence (AI) algorithms could predict QA result based on complexity metrics.

View Article and Find Full Text PDF

Robust optimization and assessment of dynamic trajectory and mixed-beam arc radiotherapy: a preliminary study.

Phys Med Biol

August 2024

Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland.

Dynamic trajectory radiotherapy (DTRT) and dynamic mixed-beam arc therapy (DYMBARC) exploit non-coplanarity and, for DYMBARC, simultaneously optimized photon and electron beams. Margin concepts to account for set-up uncertainties during delivery are ill-defined for electron fields. We develop robust optimization for DTRT&DYMBARC and compare dosimetric plan quality and robustness for both techniques and both optimization strategies for four cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!