The full-length cDNA coding for a novel invertebrate (i-type) lysozyme was identified in Pacific white shrimp (Litopenaeus vannamei). The newly obtained L. vannamei lysozyme is similar to the Penaeus monodon i-type lysozyme 2, but it is distant from the known L. vannamei c-type lysozyme and i-type lysozyme 1 in protein sequence; therefore, it was defined as L. vannamei i-type lysozyme 2 (lyz-i2). Expression of L. vannamei lyz-i2 transcripts were ubiquitously detected in all tissues we selected, with the highest abundance observed in the hemolymph. Challenge with Vibrio harveyi might elicit L. vannamei lyz-i2 mRNA expression in the hepatopancreas, intestine, muscle, gill and hemolymph. In the themolymph, specifically, the stimulatory effects of Vibrio and lipopolysaccharide (LPS) on lyz-i2 transcript levels were durable and transient, respectively; while Polyinosinic:polycytidylic acid [Poly (I:C)] treatment did not affect lyz-i2 expression. L. vannamei lyz-i2 recombinant protein was generated in an Escherichia coli system. By lysoplate and turbidimetric assays, the L. vannamei lyz-i2 recombinant protein showed a broad spectrum of antimicrobial properties with high activities against Micrococcaceae lysodeikticus and various Vibrio species and relatively low activity against E. coli. In conclusion, L. vannamei lyz-i2 might be a potent antibacterial protein with a role in innate immunity in Penaeid shrimp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2016.04.008 | DOI Listing |
Fish Shellfish Immunol
September 2024
Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden. Electronic address:
Lysozymes are hydrolytic enzymes, and they are ubiquitous among all living organisms. They are mostly associated with antibacterial properties through their muramidase activity, while other properties such as iso-peptidase activity are also common. Invertebrate-type (i-type) lysozymes include the enzyme Destabilase, which is present in the salivary secretions of the medicinal leach Hirundo medicinalis.
View Article and Find Full Text PDFInt J Mol Sci
April 2024
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland.
To assess the impact of Enchytraeidae (potworms) on the functioning of the decomposer system, knowledge of the feeding preferences of enchytraeid species is required. Different food preferences can be explained by variations in enzymatic activities among different enchytraeid species, as there are no significant differences in the morphology or anatomy of their alimentary tracts. However, it is crucial to distinguish between the contribution of microbial enzymes and the animal's digestive capacity.
View Article and Find Full Text PDFMolecules
October 2023
Leuven Food Science and Nutrition Research Centre (LFoRCe), Lab Food Microbiology, Department Microbial and Molecular Systems, KU Leuven, B-3001 Leuven, Belgium.
Lysozymes are universal components of the innate immune system of animals that kill bacteria by hydrolyzing their main cell wall polymer, peptidoglycan. Three main families of lysozyme have been identified, designated as chicken (c)-, goose (g)- and invertebrate (i)-type. In response, bacteria have evolved specific protein inhibitors against each of the three lysozyme families.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2021
Bioseutica BV, Corso Elvezia 4, 6900 Lugano, Switzerland.
Lysozyme is a ~14 kDa protein present in many mucosal secretions (tears, saliva, and mucus) and tissues of animals and plants, and plays an important role in the innate immunity, providing protection against bacteria, viruses, and fungi. Three main different types of lysozymes are known: the c-type (chicken or conventional type), the g-type (goose type), and the i-type (invertebrate type). It has long been the subject of several applications due to its antimicrobial properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!