Kuding tea are used as a traditional tea material and widely consumed in China. In this study, total saponins (TS) from water extract of Kuding tea was prepared by D101 macroporous resins and analyzed by UPLC-QTOF-MS/MS. Then the hypolipidemic effect of TS extract was investigated in high-fat diet-induced hyperlipidemic mice. For comprehensive identification or characterization of saponins in TS extract, 3 major saponins of Kudinoside A, Kudinoside F, and Kudinoside D were isolated and used as standards to investigate the MS/MS fragmentation pattern. As a result, 52 saponins were identified or characterized in TS extract from Kuding tea. In addition, the increased levels of mice serum TC, LDL-C, HDL-C, and atherogenic index (AI) were significantly reduced after the treatment of TS extract. Also, the liver protective effect of TS extract was obviously judged from the photographs stained with oil red-O staining. Meanwhile, TS extract significantly upregulated the expression of hepatic scavenger receptors including SR-AI, SR-BI, and CD36. Therefore, it is reasonable to assume that the overexpression of hepatic scavenger receptors was involved in the hypolipidemic effect of Kuding tea on the high-fat diet-induced hyperlipidemic mice. The TS extract could influence these scavenger receptors, and this could be the potential mechanism of TS extract from Kuding tea in the treatment of lipid disorders. These results give the evidence that the saponins in Kuding tea could provide benefits in managing hypercholesterolemia and may be a good candidate for development as a functional food and nutraceutical.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.13299 | DOI Listing |
Photochem Photobiol
April 2024
Medical School, Huanghe Science & Technology University, Zhengzhou, China.
The aim of the present research is to investigate anti-UVB radiation activity of total flavonoids from Ilex latifolia Thunb. (namely large-leaved Kuding tea) on human keratinocyte cell line (HaCaT cells) based on network pharmacology and molecular docking technique. Network pharmacology was used to screen target genes of active ingredients from Ilex latifolia Thunb.
View Article and Find Full Text PDFJ Food Sci
May 2023
Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou, China.
Small-leaved Kuding tea (SLKDT) obtained from Ligustrum robustum is a traditional tea substitute in southern China and has a range of physiological effects. However, the changes in its phytochemical composition after various heat treatments are not reported yet. Thus, the phytochemical composition and antioxidant activities of fresh leaves of SLKDT (LrF1) and SLKDT after high-temperature wet-heat treatment (LrF2) and wet- and dry-heat treatments (LrF3) were assessed using liquid chromatography-mass spectrometry, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities and lipid peroxidation inhibition activity of LrF1 and LrF3 were investigated.
View Article and Find Full Text PDFFood Chem
September 2023
College of Chemistry and Materials Sciences, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China. Electronic address:
Fluorescent sensors had been extensively applied on sensing various biomolecules effectively, but no fluorescent sensor for oleanolic acid was presented up to now. In this work, the first fluorescent sensor for oleanolic acid was designed and synthesized based on o-phenyl-bridged bis-tetraphenylimidazole (PTPI). PTPI was prepared by bridging two tetraphenylimidazole units and o-phenylenediamine via Schiff-base condensation in yield of 86%.
View Article and Find Full Text PDFAntioxidants (Basel)
February 2023
College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
Front Nutr
January 2023
Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
Dark tea is a fermented tea that plays a role in regulating the homeostasis of intestinal microorganisms. Previous studies have found that dark tea can improve obesity and has a lipid-lowering effect. In this study, green tea, (kuding tea) and (Luo Han Guo) were added to a new compound dark tea (CDT), to improve the taste and health of this beverage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!