Allosteric drug development holds promise for delivering medicines that are more selective and less toxic than those that target orthosteric sites. To date, the discovery of allosteric binding sites and lead compounds has been mostly serendipitous, achieved through high-throughput screening. Over the past decade, structural data has become more readily available for larger protein systems and more membrane protein classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In parallel, improved simulation methods now provide better atomistic understanding of the protein dynamics and cooperative motions that are critical to allosteric mechanisms. As a result of these advances, the field of predictive allosteric drug development is now on the cusp of a new era of rational structure-based computational methods. Here, we review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various method classes before describing relevant algorithms and software packages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901368 | PMC |
http://dx.doi.org/10.1021/acs.chemrev.5b00631 | DOI Listing |
Mol Cancer Ther
January 2025
Tango Therapeutics (United States), Boston, MA, United States.
Inhibition of the deubiquitinating enzyme USP1 can induce synthetic lethality in tumors characterized by homologous recombination deficiency (HRD) and represents a novel therapeutic strategy for the treatment of BRCA1/2 mutant cancers, potentially including patients whose tumors have primary or acquired resistance to PARP inhibitors (PARPi). Here, we present a comprehensive characterization of TNG348, an allosteric, selective, and reversible inhibitor of USP1 (USP1i). TNG348 induces dose-dependent accumulation of ubiquitinated protein substrates both in vitro and in vivo.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA.
Inhibition of the target of rapamycin (TOR/mTOR) protein kinase by the drug rapamycin extends lifespan and health span across diverse species. However, rapamycin has potential off-target and side effects that warrant the discovery of additional TOR inhibitors. TOR was initially discovered in Saccharomyces cerevisiae (yeast) which contains two TOR paralogs, TOR1 and TOR2.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Misregulation of protein-protein interactions (PPIs) underlies many diseases; hence, molecules that stabilize PPIs, known as molecular glues, are promising drug candidates. Identification of novel molecular glues is highly challenging among others because classical biochemical assays in dilute aqueous conditions have limitations for evaluating weak PPIs and their stabilization by molecular glues. This hampers the systematic discovery and evaluation of molecular glues.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2025
Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México.
Introduction: Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic.
Areas Covered: The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!