Vascular calcification (VC) is a complication of chronic kidney disease that predicts morbidity and mortality. Uremic serum promotes VC, but the mechanism involved is unknown. A role for 1,25(OH) D in VC has been proposed, but the mechanism is unclear because both low and high levels have been shown to increase it. In this work we investigate the role of 1,25(OH) D produced in vascular smooth muscle cells (VSMCs) in VC. Rats with subtotal nephrectomy and kidney recipient patients showed increased arterial expression of 1α-hydroxylase in vivo. VSMCs exposed in vitro to serum obtained from uremic rats also showed increased 1α-hydroxylase expression. Those increases were parallel to an increase in VC. After 6 days with high phosphate media, VSMCs overexpressing 1α-hydroxylase show significantly higher calcium content and RUNX2 expression than control cells. 1α-hydroxylase null mice (KO) with subtotal nephrectomy and treated with calcitriol (400 ng/kg) for 2 weeks showed significantly lower levels of vascular calcium content, Alizarin red staining, and RUNX2 expression than wild-type (WT) littermates. Serum calcium, phosphorus, blood urea nitrogen (BUN), PTH, and 1,25(OH) D levels were similar in both calcitriol-treated groups. In vitro, WT VSMCs treated with uremic serum also showed a significant increase in 1α-hydroxylase expression and higher calcification that was not observed in KO cells. We conclude that local activation of 1α-hydroxylase in the artery mediates VC observed in uremia. © 2016 American Society for Bone and Mineral Research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.2852 | DOI Listing |
Planta
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.
View Article and Find Full Text PDFGastric Cancer
January 2025
Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.
Discov Oncol
January 2025
Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China.
A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.
View Article and Find Full Text PDFMol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!