Nanomedicine as the interface between nanotechnology and medical sciences is a new area that has attracted the attention of vast groups of researchers. Carbon nanomaterials are common platform for synthesis of nanoparticles for biomedical applications due to their low cytotoxicity and feasible internalization into mammalian cell lines (Yang et al., 2007; Arora et al., 2014; Oh and Park, 2014). Synthesis of vectors based on various cationic polymers polyethylenimine (PEI), polypropylenimine (PPI) and polyamidoamine (PAMAM) and their derivatives were considered as a strategy for transferring plasmid DNA and treatment of genetic diseases. Considering the low cytotoxicity of graphene, chemical modification of its surface has led to fabrication of novel gene delivery systems based on graphene and graphene oxide. Herein we report the synthesis of three groups of vectors based on conjugation of graphene oxide (GO) with alkylated derivatives of three different cationic polymers (polyethylenimine (PEI), polypropylenimine (PPI) and polyamidoamine (PAMAM)) through different linkers including surface carboxyl group, glycine and spermidine. Two main challenges in design of gene delivery vectors is decreasing cytotoxicity while improving the transfection efficiency. All synthesized vectors showed significantly lower cellular toxicity compared to bare polymer. A plasmid encoding green fluorescent protein (GFP) was used to evaluate the transfection efficiency of nanoparticles both qualitatively using live cell fluorescent imaging and quantitatively using flow cytometry and each vector was compared to its polymer base. Most successful conjugation strategy was observed in the case of PEI conjugates among which most efficient vector was PEI-GO conjugate bearing glycine linker. This vector was 9 fold more effective in terms of the percent of EGFP transfected cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plasmid.2016.03.002DOI Listing

Publication Analysis

Top Keywords

gene delivery
12
delivery vectors
8
low cytotoxicity
8
vectors based
8
cationic polymers
8
polymers polyethylenimine
8
polyethylenimine pei
8
pei polypropylenimine
8
polypropylenimine ppi
8
ppi polyamidoamine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!