Mutant strains of Candida lipolytica defective in an acyl-CoA synthetase [acid:CoA ligase (AMP-forming); EC 6.2.1.3]were isolated. The mutant strains apparently exhibited no acyl-CoA synthetase activity in vitro and were, in contrast to the wild-type strain, incapable of growing in the presence of exogenous fatty acid when cellular synthesis de novo of fatty acid was blocked. However, the mutant strains grew on either fatty acid or n-alkane as a sole carbon source at rates comparable to that observed for the wild-type strain. Analysis of the fatty acid composition of the lipids from the mutant cells grown on odd-chain-length fatty acid as well as [14C]oleic acid incorporation studies have shown that the mutant cells, unlike the wild-type cells, cannot incorporate exogenous fatty acid as a whole into cellular lipids, but utilize the fatty acid that is synthesized de novo from acetyl-CoA produced by degradation of exogenous fatty acid. This finding indicates the presence of at least two acyl-CoA synthetases that activate long-chain fatty acid. One, designated acyl-CoA synthetase I, which is absent in the mutant strains, is responsible for the production of acyl-CoA to be utilized for the synthesis of cellular lipids. The other acyl-CoA synthetase provides actyl-CoA that is exclusively degraded via beta-oxidation to yield acetyl-CoA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC432074 | PMC |
http://dx.doi.org/10.1073/pnas.74.11.4947 | DOI Listing |
Mol Cancer
January 2025
Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).
Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.
Microbiome
January 2025
Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.
Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Institute of Health, Oslo New University College, Ullevålsveien 76, Oslo, 0454, Norway.
Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and resolve issues in nutrition, including the contentious issue of fat consumption.
View Article and Find Full Text PDFBMC Microbiol
January 2025
The Gynecology Department of Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, No.251 of Yaojiayuan Road, Chaoyang district, Beijing, China.
Background: Tuberculosis remains an infectious disease of global concern, with potential impacts on respiratory and intestinal microbiota owing to prolonged broad-spectrum antibiotic therapy. Despite its potential to cause infertility, the vaginal microbiota of women with genital tuberculosis remains poorly understood. We comprehensively analyzed the vaginal microbiota in Chinese women with genital tuberculosis.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China.
Objectives: Over 30% of people worldwide suffer from metabolic dysfunction-associated steatotic liver disease (MASLD), a significant global health issue. Identifying and preventing high-risk individuals for MASLD early is crucial. The purpose of our study is to investigate the factors related to the development of MASLD and develop a risk prediction model for its occurrence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!