Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular imaging can be used to evaluate the spatial-time change of the molecular biological phenomenon of the cell-molecule level in living bodies. Molecular imaging technology is expected to be applied in the fields of drug development, clinical diagnosis, and life science research. Specifically, positron emission tomography (PET) is a powerful non-invasive imaging technology for investigating physiological parameters in living animals using compounds labeled with PET radioisotopes as molecular probes. This review summarizes and compares various 18F-conjugation techniques that employ the chemical and enzymatic reactions of different types of tumor-targeting biological molecules such as peptides, proteins, antibodies, and nucleic acids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026616666160413125948 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!