Exciton coupling between two or more chlorophyll (Chl) pigments is a key mechanism associated with the color tuning of photosynthetic proteins but it is difficult to disentangle this effect from shifts that are due to the protein microenvironment. Herein, we report the formation of the simplest coupled system, the Chl a dimer, tagged with a quaternary ammonium ion by electrospray ionization. Based on action spectroscopic studies in vacuo, the dimer complexes were found to absorb 50-70 meV to the red of the monomers under the same conditions. First-principles calculations predict shifts that somewhat depend on the relative orientation of the two Chl units, namely 50 and 30 meV for structures where the Chl rings are stacked and unstacked, respectively. Our work demonstrates that Chl association alone can produce a large portion of the color shift observed in photosynthetic macromolecular assemblies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201601979DOI Listing

Publication Analysis

Top Keywords

exciton coupling
8
coupling chlorophyll
8
chlorophyll pigments
4
pigments absence
4
absence protein
4
protein environment
4
environment intrinsic
4
intrinsic effects
4
effects revealed
4
revealed theory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!