3D-manufactured hydrogels with precise contours and biological adhesion motifs are interesting candidates in the regenerative medicine field for the culture and differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). 3D-bioprinting is a powerful technique to approach one step closer the native organization of cells. This study investigates the effect of the incorporation of collagen type I in 3D-bioprinted polysaccharide-based hydrogels to the modulation of cell morphology, osteogenic remodeling potential, and mineralization. By combining thermo-responsive agarose hydrogels with collagen type I, the mechanical stiffness and printing contours of printed constructs can be improved compared to pure collagen hydrogels which are typically used as standard materials for MSC osteogenic differentiation. The results presented here show that MSC not only survive the 3D-bioprinting process but also maintain the mesenchymal phenotype, as proved by live/dead staining and immunocytochemistry (vimentin positive, CD34 negative). Increased solids concentrations of collagen in the hydrogel blend induce changes in cell morphology, namely, by enhancing cell spreading, that ultimately contribute to enhanced and directed MSC osteogenic differentiation. 3D-bioprinted agarose-collagen hydrogels with high-collagen ratio are therefore feasible for MSC osteogenic differentiation, contrarily to low-collagen blends, as proved by two-photon microscopy, Alizarin Red staining, and real-time polymerase chain reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.201501033 | DOI Listing |
Plants (Basel)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
The surface topography and chemistry of titanium-aluminum-vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.
Background: TGF-β1 is the most abundant cytokine in bone, in which it serves as a vital factor to interdict adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, how TGF-β1 concurrently manipulates differentiation into these two distinct lineages remains elusive.
Methods: Treatments with ligands or inhibitors followed by biochemical characterization, reporter assay, quantitative PCR and induced differentiation were applied to MSC line or primary BM-MSCs for signaling dissection.
Histochem Cell Biol
January 2025
Department of Histology and Embryology, Faculty of Medicine, Ankara Yildirim Beyazit University, 06800, Ankara, Turkey.
Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!