Hormonal ovarian stimulation may affect transcripts in somatic cells of cumulus-oocyte complexes (COCs) and affect the resulting oocyte quality. Here, in parallel with morphological classification and in vitro maturation (IVM) rate analysis, we investigated the expression of hyaluronan synthase 2 (HAS2), gonadotropic receptors (FSHR and LHR) and connexin 43 (GJA1) in cumulus cells (CCs) from goat COCs after multi-dose FSH (MD) or one-shot FSH/eCG (OS) treatments, using bovine COCs as control groups. The MD treatment produced more large follicles, and the resulting COCs had a better morphology and IVM rate than were obtained with OS. The OS treatment produced COCs with increased HAS2, FSHR, LHR and GJA1 expression. This gene expression pattern was also observed in the CCs of COCs that showed poor morphological characteristics. On the other hand, the mRNA levels were more similar between groups after IVM; FSHR and LHR were the main genes that showed decreased expression. Some events that occurred in bovine CCs during IVM, such as cell expansion, increased HAS2 expression and decreased GJA1 expression, were less evident or did not occur in goat COCs. In conclusion, increasing HAS2, FSHR, LHR and GJA1 expression in goat COCs does not confer greater meiotic competence to oocytes. Instead, it may result from poor regulation of gene expression in CCs by lower quality oocytes. Finally, cumulus expansion, together with HAS2 upregulation and GJA1 downregulation, seems to be more important for bovine COCs than for goat COCs. Additional studies are needed to investigate the importance of other HAS isoforms and connexins in goat COCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2016.03.008DOI Listing

Publication Analysis

Top Keywords

goat cocs
20
fshr lhr
16
gja1 expression
12
cocs
11
hyaluronan synthase
8
cumulus cells
8
ovarian stimulation
8
ivm rate
8
expression
8
bovine cocs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!