Hyaluronic acid (HA) provides many advantages to regenerative implants through its bioactive properties, but it also has many limitations as a biomaterial if it is not chemically modified. In order to overcome some of these limitations, HA has been combined with poly(ethyl acrylate) in the form of interpenetrating polymeric networks (IPNs), in which the HA network is crosslinked with divinyl sulfone. Scaffolds of this IPN have been produced through a template-leaching methodology, and their properties have been compared with those of single-network scaffolds made of either PEA or crosslinked HA. A fibroblast cell line has been used to assess the in vitro performance of the scaffolds, revealing good cell response and a differentiated behavior on the IPN surface when compared to the individual polymers. Altogether, the results confirm that this type of material offers an interesting microenvironment for cells, which can be further improved toward its potential use in medical implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.201600028 | DOI Listing |
J Am Chem Soc
January 2025
BioCIS, Faculté de Pharmacie, Université Paris-Saclay, CNRS, Orsay 91400, France.
The endoperoxide scaffold is found in numerous natural products and synthetic substances of pharmaceutical interest. The main challenge to their synthetic access remains the preparation of chiral compounds due to the weakness of the peroxide bond, which limits the scope of available or applicable methods. Here, we demonstrate how peroxycarbenium species can be trapped by silylated nucleophiles with high enantioselectivities and diastereoselectivities when applicable, using a chiral imidophosphorimidate (IDPi) as a catalyst.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.
Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.
View Article and Find Full Text PDFRSC Med Chem
January 2025
School of Chemical Sciences, University of Auckland Auckland 1010 New Zealand
Dysregulation of choline phospholipid metabolism and overexpression of phosphatidylcholine-specific phospholipase C (PC-PLC) is implicated in various cancers. Current known enzyme inhibitors include compounds based on a 2-morpholino-5--benzylamino benzoic acid, or hydroxamic acid, scaffold. In this work, 81 compounds were made by modifying this core structure to explore the pharmacophore.
View Article and Find Full Text PDFChem Sci
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong Wollongong New South Wales 2522 Australia
Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!