The discovery and synthesis of novel multifunctional organic building blocks for nanoparticles is challenging. Texaphyrin macrocycles are capable and multifunctional chelators. However, they remain elusive as building blocks for nanoparticles because of the difficulty associated with synthesis of texaphyrin constructs capable of self-assembly. A novel manganese (Mn)-texaphyrin-phospholipid building block is described, along with its one-pot synthesis and self-assembly into a Mn-nanotexaphyrin. This nanoparticle possesses strong resilience to manganese dissociation, structural stability, in vivo bio-safety, and structure-dependent T1 and T2 relaxivities. Magnetic resonance imaging (MRI) contrast enhanced visualization of lymphatic drainage is demonstrated with respect to proximal lymph nodes on the head and neck VX-2 tumors of a rabbit. Synthesis of 17 additional metallo-texaphyrin building blocks suggests that this novel one-pot synthetic procedure for nanotexaphyrins may lead to a wide range of applications in the field of nanomedicines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201600234DOI Listing

Publication Analysis

Top Keywords

building blocks
12
one-pot synthesis
8
magnetic resonance
8
resonance imaging
8
blocks nanoparticles
8
synthesis
5
nanotexaphyrin one-pot
4
synthesis manganese
4
manganese texaphyrin-phospholipid
4
texaphyrin-phospholipid nanoparticle
4

Similar Publications

Synthesis of three-dimensional covalent organic frameworks through a symmetry reduction strategy.

Nat Chem

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.

Three-dimensional (3D) covalent organic frameworks (COFs) hold significant promise for a variety of applications. However, conventional design approaches using regular building blocks limit the structural diversity of 3D COFs. Here we design and synthesize two 3D COFs, designated as JUC-644 and JUC-645, through a methodology that relies on using eight-connected building blocks with reduced symmetry.

View Article and Find Full Text PDF

Attention-based deep learning for accurate cell image analysis.

Sci Rep

January 2025

XtalPi Innovation Center, 706 Block B, Dongsheng Building, Haidian District, Beijing, China.

High-content analysis (HCA) holds enormous potential for drug discovery and research, but widely used methods can be cumbersome and yield inaccurate results. Noisy and redundant signals in cell images impede accurate deep learning-based image analysis. To address these issues, we introduce X-Profiler, a novel HCA method that combines cellular experiments, image processing, and deep learning modeling.

View Article and Find Full Text PDF

Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.

View Article and Find Full Text PDF

Divide and conquer, mitochondrial edition: Subpopulations direct cellular energy and nutrient supply.

Cell Metab

January 2025

Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Electronic address:

Mitochondria produce energy and building blocks essential for cell growth. How these competing processes are balanced and sustained during nutrient scarcity remains unclear. Ryu et al.

View Article and Find Full Text PDF

DNA double crossover (DX) motifs including DAE (double crossover, antiparallel, even spacing) and DAO (double crossover, antiparallel, odd spacing) are well-known monolayered DNA building blocks for construction of 2D DNA arrays and tubes in nanoscale and microscale. Compared to the 3D architectures of DNA origami and single-stranded DNA bricks to build nanoscale 3D bundles, tessellations, gears, castles, etc., designs of double- and multi-layers of DX motifs for 3D architectures are still limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!