In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829850 | PMC |
http://dx.doi.org/10.1038/srep23610 | DOI Listing |
ACS Nano
December 2024
School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
Interlayer excitons (IX), spatially separated electron-hole pair quasiparticles, can form in type-II van der Waals heterostructures (vdWH). To date, the most widely studied IX in hetero- and homobilayer transition metal dichalcogenides feature momentum-indirect and visible interlayer recombinations. However, momentum-direct IX emissions and interlayer absorptions, especially in the infrared, are crucial for excitonic devices but remain underexplored.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Mathematics, KU Leuven Campus Kortrijk (KULAK), Etienne Sabbelaan 53, 8500, Kortrijk, Belgium.
Many extended chemical and biological systems self-organise into complex patterns that drive the medium behaviour in a non-linear fashion. An important class of such systems are excitable media, including neural and cardiac tissues. In extended excitable media, wave breaks can form rotating patterns and turbulence.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
High-speed electrical control of nano-optoelectronic properties in two-dimensional semiconductors is a building block for the development of excitonic devices, allowing the seamless integration of nano-electronics and -photonics. Here, we demonstrate a high-speed electrical modulation of nanoscale exciton behaviors in a MoS monolayer at room temperature through a quantum tunneling nanoplasmonic cavity. Electrical control of tunneling electrons between Au tip and MoS monolayer facilitates the dynamic switching of neutral exciton- and trion-dominant states at the nanoscale.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
Department of Physics, Shanghai University, Shanghai 200444, China.
Vertical van der Waals heterostructures composed of graphene (Gr) and transition metal dichalcogenides (TMDs) have created a fascinating platform for exploring optical and electronic properties in the two-dimensional limit. Numerous studies have focused on Gr/TMDs heterostructures to elucidate the underlying mechanisms of charge-energy transfer, quasiparticle formation, and relaxation following optical excitation. Nevertheless, a comprehensive understanding of interfacial charge separation and subsequent dynamics in graphene-based heterostructures remains elusive.
View Article and Find Full Text PDFInorg Chem
April 2024
School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Two-dimensional inorganic-organic hybrid layered semiconductors are actively studied because of their naturally formed multiquantum well (MQW) structures and associated optical, photoelectric, and quantum optics characteristics. Silver benzeneselenolate (AgSePh, Ph = CH) is a new member of such hybrid layered materials, but has not fully been exploited. Herein, we present a quasi-solution method to prepare high quality free-standing AgSePh flake-like microcrystals by reacting diphenyl diselenide (PhSe) with silver nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!