Nanoparticles sized tens of nm with not only a highly complex but also a highly regular nanostructure, although ubiquitous in nature, are very difficult to prepare artificially. Herein, we report efficient solution-based preparation of narrow-disperse ABC three-segment hierarchical nanoparticles (HNPs) with a size of tens of nm through a three-level hierarchical self-assembly of A-b-B-b-C triblock copolymers in solution. An ABC HNP is composed of three nanoparticles, A, B, and C that are linearly connected; in the ABC HNP, the B nanoparticle is sandwiched between the A and C nanoparticles. The method for the preparation is highly efficient, because all of the A-b-B-b-C chains in the solution are converted into the ABC HNPs. Furthermore, the ABC HNPs self-assembled into Θ-shaped HNPs tens nm in size. Both the ABC and Θ-shaped HNPs, are highly complex but highly regular, and are novel HNPs, and they should be very promising for addressing various theoretical and practical problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201511768 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!