Neuronal networks in vitro are considered one of the most promising targets of research to assess potential electromagnetic field induced effects on neuronal functionality. A few exposure studies revealed there is currently no evidence of any adverse health effects caused by weak electromagnetic fields. Nevertheless, some published results are inconsistent. Particularly, doubts have been raised regarding possible athermal biological effects in the young brain during neuronal development. Therefore, we developed and characterized a flexible experimental setup based on a transverse electromagnetic waveguide, allowing controlled, reproducible exposure of developing neuronal networks in vitro. Measurement of S-parameters confirmed very good performance of the Stripline in the band of 800-1000 MHz. Simulations suggested a flexible positioning of cell culture dishes throughout a large exposure area, as specific absorption rate values were quite independent of their position (361.7 ± 11.4 mW/kg) at 1 W, 900 MHz. During exposure, thermal drift inside cellular medium did not exceed 0.1 K. Embryonic rat cortical neurons were cultivated on microelectrode array chips to non-invasively assess electrophysiological properties of electrogenic networks. Measurements were taken for several weeks, which attest to the experimental setup being a reliable system for long-term studies on developing neuronal tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bem.21974DOI Listing

Publication Analysis

Top Keywords

developing neuronal
12
neuronal networks
12
experimental setup
12
exposure developing
8
flexible experimental
8
networks vitro
8
neuronal
6
exposure
5
long-term electromagnetic
4
electromagnetic exposure
4

Similar Publications

Plasma phosphorylated tau biomarkers open unprecedented opportunities for identifying carriers of Alzheimer's disease pathophysiology in early disease stages using minimally invasive techniques. Plasma p-tau biomarkers are believed to reflect tau phosphorylation and secretion. However, it remains unclear to what extent the magnitude of plasma p-tau abnormalities reflects neuronal network disturbance in the form of cognitive impairment.

View Article and Find Full Text PDF

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr.

View Article and Find Full Text PDF

Cell fate decisions during cortical development sculpt the identity of long-range connections that subserve complex behaviors. These decisions are largely dictated by mutually exclusive transcription factors, including CTIP2/Bcl11b for subcerebral projection neurons and BRN1/Pou3f3 for intra-telencephalic projection neurons. We have recently reported that the balance of cortical CTIP2-expressing neurons is altered in a mouse model of DDX3X syndrome, a female-biased neurodevelopmental disorder associated with intellectual disability, autism spectrum disorder, and significant motor challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!