Metabolic profiles of amniotic fluid and maternal blood are sources of valuable information about fetus development and can be potentially useful in diagnosis of pregnancy disorders. In this study, we applied 1H NMR-based metabolic profiling to track metabolic changes occurring in amniotic fluid (AF) and plasma (PL) of healthy mothers over the course of pregnancy. AF and PL samples were collected in the 2nd (T2) and 3rd (T3) trimester, prolonged pregnancy (PP) until time of delivery (TD). A multivariate data analysis of both biofluids reviled a metabolic switch-like transition between 2nd and 3rd trimester, which was followed by metabolic stabilization throughout the rest of pregnancy probably reflecting the stabilization of fetal maturation and development. The differences were further tested using univariate statistics at α = 0.001. In plasma the progression from T2 to T3 was related to increasing levels of glycerol, choline and ketone bodies (3-hydroxybutyrate and acetoacetate) while pyruvate concentration was significantly decreased. In amniotic fluid, T2 to T3 transition was associated with decreasing levels of glucose, carnitine, amino acids (valine, leucine, isoleucine, alanine, methionine, tyrosine, and phenylalanine) and increasing levels of creatinine, succinate, pyruvate, choline, N,N-dimethylglycine and urocanate. Lactate to pyruvate ratio was decreased in AF and conversely increased in PL. The results of our study, show that metabolomics profiling can be used to better understand physiological changes of the complex interdependencies of the mother, the placenta and the fetus during pregnancy. In the future, these results might be a useful reference point for analysis of complicated pregnancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829258 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152740 | PLOS |
Hereditas
January 2025
Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).
View Article and Find Full Text PDFJ Biomater Appl
January 2025
BEST/CB3S, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, Villetaneuse, France.
Myelomeningocele (MMC) is a congenital defect of the spine characterized by meningeal and spinal cord protrusion through open vertebral archs, and its exposure to the amniotic fluid. Given that the progression of neuronal loss begins early in fetal life, an early coverage of the defect is required to improve the neurological outcomes. Several studies have proposed patches as an alternative to full surgical repair, to achieve an early protection of the spine and possibly reduce the rate of complications of current prenatal surgical procedures.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
Micro(nano)plastics (MNPs), widely distributed in the environment, can be ingested and accumulated by various organisms. Recently, the transgenerational transport of MNPs from parental organisms to their offspring has attracted increasing attention. In this review, we summarize the patterns, specific pathways, and related mechanisms of intergenerational transfer of MNPs in plants, non-mammals (zooplankton and fish) and mammals.
View Article and Find Full Text PDFCurr Opin Hematol
January 2025
Department of Pathology, Section of Oncopathology and Morphological Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
Purpose Of Review: This review aims to summarize the histological differences among thrombi in acute myocardial infarction, ischemic stroke, venous thromboembolism, and amniotic fluid embolism, a newly identified thrombosis.
Recent Findings: Acute coronary thrombi have a small size, are enriched in platelets and fibrin, and show the presence of fibrin and von Willebrand factor, but not collagen, at plaque rupture sites. Symptomatic deep vein thrombi are large and exhibit various phases of time-dependent histological changes.
J Endocrinol
January 2025
K Soma, Psychology, The University of British Columbia, Vancouver, V6T 1Z4, Canada.
Maternal diet has long-term effects on offspring brain development and behavior. Sucrose (table sugar) intakes are high in modern diets, but it is not clear how a maternal high-sucrose diet (HSD) affects the offspring. In rats, a maternal HSD (26% of calories from sucrose, which is human-relevant) alters maternal metabolism and brain and also alters adult offspring endocrinology and behavior in a sex-specific manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!