Blood-Brain Barrier Breakdown Determines Differential Therapeutic Outcome in Genetically Diverse Forms of Medulloblastoma.

Cancer Cell

Institute of Neurology (Edinger-Institute), Johann Wolfgang Goethe-University Frankfurt Medical School, Heinrich-Hoffmann-Straße 7, 60528 Frankfurt, Germany. Electronic address:

Published: April 2016

Medulloblastoma driven by Wnt/β-catenin and Sonic hedgehog pathway mutations show favorable and poor patient survival upon treatment, respectively. In this Cancer Cell issue, Phoenix and colleagues (2016) report disruption of the blood-brain barrier by Wif1 specifically in Wnt-driven medulloblastoma, resulting in increased treatment response and survival in mouse models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccell.2016.03.024DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
barrier breakdown
4
breakdown determines
4
determines differential
4
differential therapeutic
4
therapeutic outcome
4
outcome genetically
4
genetically diverse
4
diverse forms
4
forms medulloblastoma
4

Similar Publications

Acute stress triggers sex-dependent rapid alterations in the human small intestine microbiota composition.

Front Microbiol

January 2025

Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

Background/aims: Digestive disorders of gut-brain interaction (DGBI) are very common, predominant in females, and usually associated with intestinal barrier dysfunction, dysbiosis, and stress. We previously found that females have increased susceptibility to intestinal barrier dysfunction in response to acute stress. However, whether this is associated with changes in the small bowel microbiota remains unknown.

View Article and Find Full Text PDF

Background: (BC), also named Niuhuang in Chinese, is utilized as a resuscitation drug in Traditional Chinese Medicine (TCM) for the treatment of neurological disorders. Ischemic stroke (IS) is a significant global public health issue that currently lacks safe and effective therapeutic drugs. Ongoing efforts are focused on identifying effective treatment strategies from Traditional, Complementary, and Integrative Medicine.

View Article and Find Full Text PDF

Human platelet lysate: a potential therapeutic for intracerebral hemorrhage.

Front Neurosci

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis.

View Article and Find Full Text PDF

Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!