Succinic acid (SA) is one of the fermentative products of anaerobic metabolism, and an important industrial chemical that has been much studied for its bio-based production. The key to the economically viable bio-based SA production is to develop an SA producer capable of producing SA with high yield and productivity without byproducts. Mannheimia succiniciproducens is a capnophilic rumen bacterium capable of efficiently producing SA. In this study, in silico genome-scale metabolic simulations were performed to identify gene targets to be engineered, and the PALK strain (ΔldhA and Δpta-ackA) was constructed. Fed-batch culture of PALK on glucose and glycerol as carbon sources resulted in the production of 66.14 g/L of SA with the yield and overall productivity of 1.34 mol/mol glucose equivalent and 3.39 g/L/h, respectively. SA production could be further increased to 90.68 g/L with the yield and overall productivity of 1.15 mol/mol glucose equivalent and 3.49 g/L/h, respectively, by utilizing a mixture of magnesium hydroxide and ammonia solution as a pH controlling solution. Furthermore, formation of byproducts was drastically reduced, resulting in almost homo-fermentative SA production. This allowed the recovery and purification of SA to a high purity (99.997%) with a high recovery yield (74.65%) through simple downstream processes composed of decolorization, vacuum distillation, and crystallization. The SA producer and processes developed in this study will allow economical production of SA in an industrial-scale. Biotechnol. Bioeng. 2016;113: 2168-2177. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.25988 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!