Comparative Study of Adipose-Derived Stem Cells From Abdomen and Breast.

Ann Plast Surg

From the *School of Materials Science and Engineering, †School of Biological Science, Nanyang Technological University, Nanyang; ‡ Institute of Molecular and Cell Biology, Agency for Science Technology & Research (A*STAR), Biopolis; §KK Research Centre, KK Women's and Children's Hospital; ∥Singapore Bioimaging Consortium, Duke-NUS Graduate Medical School; ¶Division of Plastic, Reconstructive and Aesthetic Surgery, National University Hospital; and #Plastic, Reconstructive and Aesthetic Surgery Section, Tan Tock Seng Hospital, Singapore.

Published: May 2016

Background: Abdominal tissue enriched with adipose-derived stem cells (ASCs) is often used in cell-assisted lipotransfer procedures for breast reconstruction. However, as the tissue microenvironment and stem cell niche play important roles in defining the characteristics of the resident cells, it is hypothesized that the stem cell population present in the donor abdominal tissue has dissimilar properties as compared with the cells in the recipient breast tissue, which may ultimately affect the long-term success of the graft.

Methods: Adipose-derived stem cells were isolated from breast and abdominal fat tissues and characterized for mesenchymal-specific cell surface markers, and their population doubling, colony-forming capabilities, and proliferative properties were compared. The multilineage potential of both cell populations was also investigated.

Results: Adipose-derived stem cells from both tissue sites were found to possess similar marker expression and multilineage differentiation potential. However, breast fat-derived ASCs were observed to have a higher self-renewal capability and an unstable population doubling as compared with abdominal fat-derived ASCs. Gene expression studies revealed that the breast fat-derived ASCs were predisposed to the osteogenic lineage and the abdominal fat-derived ASCs to the adipogenic lineage.

Conclusions: Cells derived from both fat tissues possess different characteristics in terms of their growth kinetics and predisposition to the osteolineages and adipolineages. In particular, ASCs from the abdominal tissue appear to contribute to adipose tissue turnover, whereas ASCs from breast tissue, if used for cell-assisted fat grafting, may potentially be responsible for complications in fat grafting, such as oil cysts, calcifications, fat necrosis, and tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SAP.0000000000000797DOI Listing

Publication Analysis

Top Keywords

adipose-derived stem
16
stem cells
16
fat-derived ascs
16
abdominal tissue
12
tissue
8
stem cell
8
properties compared
8
breast tissue
8
fat tissues
8
population doubling
8

Similar Publications

Adipose-derived stem cells regulate mitochondrial dynamics to alleviate the aging of HFF-1 cells.

In Vitro Cell Dev Biol Anim

January 2025

Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.

The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.

View Article and Find Full Text PDF

Increasing evidence of the significant clinical value of protection against ischemia/reperfusion injury has contributed to the realization of the independent importance of this approach in improving prognosis and reducing cardiovascular mortality. Extracellular vesicles (EVs) derived by adipose mesenchymal stem cells may mediate the paracrine effects of stem cells and provide regenerative and anti-inflammatory properties, which are enhanced by γ-aminobutyric acid. The protective effects on cardiac myocytes may result from the EV embarked by miR-21-5p, which is a target for thioredoxin-interacting protein, regulating the formation of thioredoxin-interacting protein-thioredoxin complexes and subsequently enhancing the antioxidant activity of thioredoxin.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

Hypoxia-regulated miR-103-3p/FGF2 axis in adipose-derived stem cells promotes angiogenesis by vascular endothelial cells during ischemic tissue repair.

Int J Cardiol

January 2025

Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China. Electronic address:

Background: Identifying factors mediating adipose-derived stem cells (ADSCs)-induced endothelial cell angiogenesis in hypoxic skin flap tissue is critical for reconstruction. While the paracrine action of VEGF by adipose-derived stem cells (ADSCs) is established in promoting endothelial cell angiogenesis, the role of FGF2 and its regulatory mechanisms in ADSCs paracrine secretion remains unclear.

Methods: We induced hypoxia and examined the expression level of FGF2 in ADSCs using ELISA, qRT-PCR, and western blotting.

View Article and Find Full Text PDF

Introduction: To investigate how adipose-derived mesenchymal stem cells (ADSCs) regulate the balance between regulatory T cells (Treg) and Th17 cells through the IL-2/JAK3/STAT5 signaling pathway in a rat model of allergic rhinitis (AR).

Methods: Adipose-derived stem cells (ADSCs) were used to treat an ovalbumin (OVA)-induced AR rat model. The pathological changes and nasal symptoms were observed by HE staining and scanning electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!