Herman Melville's novel Moby Dick was inspired by historical instances in which large sperm whales (Physeter macrocephalus L.) sank 19th century whaling ships by ramming them with their foreheads. The immense forehead of sperm whales is possibly the largest, and one of the strangest, anatomical structures in the animal kingdom. It contains two large oil-filled compartments, known as the "spermaceti organ" and "junk," that constitute up to one-quarter of body mass and extend one-third of the total length of the whale. Recognized as playing an important role in echolocation, previous studies have also attributed the complex structural configuration of the spermaceti organ and junk to acoustic sexual selection, acoustic prey debilitation, buoyancy control, and aggressive ramming. Of these additional suggested functions, ramming remains the most controversial, and the potential mechanical roles of the structural components of the spermaceti organ and junk in ramming remain untested. Here we explore the aggressive ramming hypothesis using a novel combination of structural engineering principles and probabilistic simulation to determine if the unique structure of the junk significantly reduces stress in the skull during quasi-static impact. Our analyses indicate that the connective tissue partitions in the junk reduce von Mises stresses across the skull and that the load-redistribution functionality of the former is insensitive to moderate variation in tissue material parameters, the thickness of the partitions, and variations in the location and angle of the applied load. Absence of the connective tissue partitions increases skull stresses, particularly in the rostral aspect of the upper jaw, further hinting of the important role the architecture of the junk may play in ramming events. Our study also found that impact loads on the spermaceti organ generate lower skull stresses than an impact on the junk. Nevertheless, whilst an impact on the spermaceti organ would reduce skull stresses, it would also cause high compressive stresses on the anterior aspect of the organ and the connective tissue case, possibly making these structures more prone to failure. This outcome, coupled with the facts that the spermaceti organ houses sensitive and essential sonar producing structures and the rostral portion of junk, rather than the spermaceti organ, is frequently a site of significant scarring in mature males suggest that whales avoid impact with the spermaceti organ. Although the unique structure of the junk certainly serves multiple functions, our results are consistent with the hypothesis that the structure also evolved to function as a massive battering ram during male-male competition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824896 | PMC |
http://dx.doi.org/10.7717/peerj.1895 | DOI Listing |
Anat Rec (Hoboken)
September 2024
Laboratory of Anatomy, Function and Evolution of Marine Vertebrates (LAFEV-MAR), Institute of Marine Science, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.
Little is known about the biology of pygmy sperm whales, Kogia breviceps (De Blainville, 1838), being that most anatomical descriptions for the species derive from necropsy after stranding or from osteological material preserved in museums. This species is rarely seen despite its wide distribution, and its reproductive behaviour is still being investigated. The eventual occurrence of pregnant female strandings and the collection and description of foetuses can give clues about the organisms' mostly unknown early development.
View Article and Find Full Text PDFLipids
September 2020
Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077, Goettingen, Germany.
Wax esters (WE) belong to the class of neutral lipids. They are formed by an esterification of a fatty alcohol and an activated fatty acid. Dependent on the chain length and desaturation degree of the fatty acid and the fatty alcohol moiety, WE can have diverse physicochemical properties.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2018
Zoophysiology, Institute for Bioscience, Aarhus University, Aarhus, Denmark.
The waveforms of individual sperm whale clicks often appear as multiple pulses, which are the product of a single pulse reverberating throughout the spermaceti organ. Since there is a relationship between spermaceti organ size and total body size, it is possible to estimate a whale's length by measuring the inter-pulse intervals (IPIs) within its clicks. However, if a click is recorded off-axis, the IPI corresponding to spermaceti organ length is usually obscured.
View Article and Find Full Text PDFPeerJ
April 2016
Institute for Fiber Engineering, Department of Bioengineering, Shinshu University, Ueda, Nagano , Japan.
Herman Melville's novel Moby Dick was inspired by historical instances in which large sperm whales (Physeter macrocephalus L.) sank 19th century whaling ships by ramming them with their foreheads. The immense forehead of sperm whales is possibly the largest, and one of the strangest, anatomical structures in the animal kingdom.
View Article and Find Full Text PDFZoology (Jena)
February 2016
Department of Biological Sciences, University of Cape Town, South Africa.
The sperm whale skull amphitheatre cradles an enormous two-tonne spermaceti organ. The amphitheatre separates this organ from the cranium and the cervical vertebrae that lie in close proximity to the base of the skull. Here, we elucidate that this skull amphitheatre is an elastic, flexible, triple-layered structure with mechanical properties that are conjointly guided by bone histology and the characteristics of pore space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!