The known angiotensin II (AngII) physiological effect of aldosterone synthesis and secretion induction, a steroid hormone that contributes to the pathology of postmyocardial infarction (MI) heart failure (HF), is mediated by both Gq/11 proteins and β-arrestins, both of which couple to the AngII type 1 receptors (AT1Rs) of adrenocortical zona glomerulosa (AZG) cells. Over the past several years, AngII analogs with increased selectivity ("bias") toward β-arrestin-dependent signaling at the AT1R have been designed and described, starting with SII, the gold-standard β-arrestin-"biased" AngII analog. In this study, we examined the relative potencies of an extensive series of AngII peptide analogs at relative activation of G proteins versus β-arrestins by the AT1R. The major structural difference of these peptides from SII was their varied substitutions at position 5, rather than position 4 of native AngII. Three of them were found biased for β-arrestin activation and extremely potent at stimulating aldosterone secretion in AZG cells in vitro, much more potent than SII in that regard. Finally, the most potent of these three ([Sar(1), Cys(Et)(5), Leu(8)]-AngII, CORET) was further examined in post-MI rats progressing to HF and overexpressing adrenal β-arrestin1 in vivo. Consistent with the in vitro studies, CORET was found to exacerbate the post-MI hyperaldosteronism, and, consequently, cardiac function of the post-MI animals in vivo. Finally, our data suggest that increasing the size of position 5 of the AngII peptide sequence results in directly proportional increases in AT1R-dependent β-arrestin activation. These findings provide important insights for AT1R pharmacology and future AngII-targeted drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804318PMC
http://dx.doi.org/10.1002/prp2.226DOI Listing

Publication Analysis

Top Keywords

β-arrestin-dependent signaling
8
azg cells
8
angii peptide
8
β-arrestin activation
8
angii
7
structure-activity relationship
4
relationship study
4
study angiotensin
4
angiotensin analogs
4
analogs terms
4

Similar Publications

Getting it right: suppression and leveraging of noise in robust decision-making.

Quant Plant Biol

November 2024

Department of Forest Genetics and Plant Physiology, The Swedish University of Agricultural Sciences, Umeå Plant Science Center, Umeå, Sweden.

Noise is a ubiquitous feature for all organisms growing in nature. Noise (defined here as stochastic variation) in the availability of nutrients, water and light profoundly impacts their growth and development. Not only is noise present as an external factor but cellular processes themselves are noisy.

View Article and Find Full Text PDF

Ion homeostasis is a crucial process in plants that is closely linked to the efficiency of nutrient uptake, stress tolerance and overall plant growth and development. Nevertheless, our understanding of the fundamental processes of ion homeostasis is still incomplete and highly fragmented. Especially at the mechanistic level, we are still in the process of dissecting physiological systems to analyse the different parts in isolation.

View Article and Find Full Text PDF

Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a major complication of type 2 diabetes mellitus (T2DM), but its effective prevention and treatment are still limited. We investigated the effects of GYY4137, a slow-releasing hydrogen sulfide donor, and its downstream mediator forkhead box protein O1 (FOXO1) on T2DM-associated DCM. , T2DM mice were induced by a high-fat diet coupled with streptozotocin injection.

View Article and Find Full Text PDF

controls wing developmental growth by targeting .

Anim Cells Syst (Seoul)

December 2024

School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea.

Tissue growth is controlled by various signaling pathways, such as the insulin/IGF-signaling (IIS) pathway. Although IIS activation is regulated by a complex regulatory network, the mechanism underlying miRNA-based regulation of the IIS pathway in wing development remains unclear. In this study, we found that the wing size of adult flies was negatively affected by miR-263b expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!