Plants that store nonstructural carbohydrates (NSC) may rely on carbon reserves to survive carbon-limiting stress, assuming that reserves can be mobilized. We asked whether carbon reserves decrease in resource stressed seedlings, and if NSC allocation is related to species' relative stress tolerances. We tested the effects of stress (shade, drought, and defoliation) on NSC in seedlings of five temperate tree species (Acer rubrum Marsh., Betula papyrifera Marsh., Fraxinus americana L ., Quercus rubra L., and Quercus velutina Lam.). In a greenhouse experiment, seedlings were subjected to combinations of shade, drought, and defoliation. We harvested seedlings over 32-97 days and measured biomass and NSC concentrations in stems and roots to estimate depletion rates. For all species and treatments, except for defoliation, seedling growth and NSC accumulation ceased. Shade and drought combined caused total NSC decreases in all species. For shade or drought alone, only some species experienced decreases. Starch followed similar patterns as total NSC, but soluble sugars increased under drought for drought-tolerant species. These results provide evidence that species deplete stored carbon in response to carbon limiting stress and that species differences in NSC response may be important for understanding carbon depletion as a buffer against shade- and drought-induced mortality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813112PMC
http://dx.doi.org/10.1002/ece3.1819DOI Listing

Publication Analysis

Top Keywords

shade drought
16
seedlings temperate
8
temperate tree
8
species
8
tree species
8
nsc
8
carbon reserves
8
drought defoliation
8
total nsc
8
drought
6

Similar Publications

Effect of Flowering Shading on Grain Yield and Quality of Durum Wheat in a Mediterranean Environment.

Plants (Basel)

December 2024

Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Balzarini, 1, 64100 Teramo, Italy.

The phenomenon known as "dimming" or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in many regions worldwide, with a global radiation decrease estimated between 1.4% and 2.

View Article and Find Full Text PDF

Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS).

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) belong to a subfamily of the bHLH transcription factor family and play a pivotal role in plant light signal transduction, hormone signal pathways, and the modulation of plant responses to various abiotic stresses. The soybean (Glycine max) is a significant food crop, providing essential oil and nutrients. Additionally, it is a vital industrial raw material and a lucrative cash crop.

View Article and Find Full Text PDF

Macroecology of Abiotic Stress Tolerance in Woody Plants of the Northern Hemisphere: Tolerance Biomes and Polytolerance Hotspots.

Ecol Lett

November 2024

Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.

Understanding the main ecological constraints on plants' adaptive strategies to tolerate multiple abiotic stresses is a central topic in plant ecology. We aimed to uncover such constraints by analysing how the interactions between climate, soil features and species functional traits co-determine the distribution and diversity of stress tolerance strategies to drought, shade, cold and waterlogging in woody plants of the Northern Hemisphere. Functional traits and soil fertility predominantly determined drought and waterlogging/cold tolerance strategies, while climatic factors strongly influenced shade tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!