Serum contains a growth factor derived from platelets and also growth factors derived from platelet-poor plasma. Extracts of heated (100 degrees ) human platelets function synergistically with platelet-poor plasma to induce DNA synthesis in quiescent, density-inhibited BALB/c 3T3 cells. Platelet-poor plasma alone did not induce DNA synthesis. Cells exposed to platelet extracts became competent to enter the cell cycle, but the rate of entry into the S phase depended upon the concentration of platelet-poor plasma. The time required for the induction of this competent state was a function of the concentration of the platelet extract. A 2-hr exposure to 100 mug of the platelet extract at 37 degrees caused the entire cell population to become competent to enter the S phase. At 4 degrees or 25 degrees the cells did not become competent to synthesize DNA. The platelet extract-induced competent state was stable for at least 13 hr after removal of the platelet extract; however, in the absence of platelet-poor plasma, these competent cells did not progress through the cell cycle. The addition of an optimal concentration of platelet-poor plasma (5%) to these competent cells initiated cell cycle traverse with a rapid, first-order entry of cells into the S phase beginning 12 hr after addition of the plasma. The addition of a suboptimal concentration of the plasma (0.25%) did not increase the rate of cell entry into the S phase. Thus, the induction of DNA synthesis in quiescent BALB/c 3T3 cells can be resolved into at least two phases, controlled by different serum components: (i) competence, induced by the platelet-derived growth factor; and (ii) progression of competent cells into the cell cycle, mediated by factors in platelet-poor plasma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC431967PMC
http://dx.doi.org/10.1073/pnas.74.10.4481DOI Listing

Publication Analysis

Top Keywords

platelet-poor plasma
28
dna synthesis
16
cell cycle
16
balb/c 3t3
12
3t3 cells
12
platelet extract
12
competent cells
12
cells
9
plasma
9
induction dna
8

Similar Publications

Current hemodialysis treatments can cause adverse effects, many of which are linked to the membranes used in the process. These issues are being addressed through new materials and technologies, making it urgent to establish minimum guidelines for evaluating such membranes. This review proposes standardizing the biological tests and variables to evaluate the performance of new membranes, aiming to replicate hemodialysis conditions closely.

View Article and Find Full Text PDF

Background: Red blood cell (RBC) aggregation can be initiated by calcium and tissue factor, which may independently contribute to microvascular and macrovascular thrombosis after injury and transfusion. Previous studies have demonstrated that increased blood storage duration may contribute to thrombotic events. The aims of this study were to first determine the effect of blood product components, age, and hematocrit (HCT) on the aggregability of RBCs, followed by measurement of RBC aggregability in two specific injury models including traumatic brain injury (TBI) and hemorrhagic shock.

View Article and Find Full Text PDF

Antibacterial Effect of Canine Leucocyte Platelet-Rich Plasma (L-PRP) and Canine Platelet-Poor Plasma (PPP) Against Methicillin-Sensitive and Methicillin-Resistant .

Vet Sci

December 2024

Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy.

(SP) is a commensal and opportunistic pathogen of skin and mucosal surfaces, isolated from healthy dogs and from canine pyoderma cases. It has recently gained attention due to its increasing antibiotic resistance. Platelet-rich plasma (PRP) is a biological product, obtained through a blood centrifugation process, which has antibacterial properties evidenced by in vitro and in vivo studies conducted in both the human and veterinary field.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis (OA) is common and currently lacks effective treatments that can both modulate the immune response and repair cartilage, prompting research into extracellular vesicles (EVs) from blood-derived products like platelet poor plasma (PPP).
  • This study examined how PPP-derived EVs affect OA chondrocytes in a lab setting, revealing that these EVs possess anti-inflammatory properties and can significantly reduce the expression of certain inflammatory genes associated with OA.
  • The findings suggest that PPP-EVs can potentially be developed as a new type of treatment for OA, offering promise for better management of the disease in the future.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!