Serum contains a growth factor derived from platelets and also growth factors derived from platelet-poor plasma. Extracts of heated (100 degrees ) human platelets function synergistically with platelet-poor plasma to induce DNA synthesis in quiescent, density-inhibited BALB/c 3T3 cells. Platelet-poor plasma alone did not induce DNA synthesis. Cells exposed to platelet extracts became competent to enter the cell cycle, but the rate of entry into the S phase depended upon the concentration of platelet-poor plasma. The time required for the induction of this competent state was a function of the concentration of the platelet extract. A 2-hr exposure to 100 mug of the platelet extract at 37 degrees caused the entire cell population to become competent to enter the S phase. At 4 degrees or 25 degrees the cells did not become competent to synthesize DNA. The platelet extract-induced competent state was stable for at least 13 hr after removal of the platelet extract; however, in the absence of platelet-poor plasma, these competent cells did not progress through the cell cycle. The addition of an optimal concentration of platelet-poor plasma (5%) to these competent cells initiated cell cycle traverse with a rapid, first-order entry of cells into the S phase beginning 12 hr after addition of the plasma. The addition of a suboptimal concentration of the plasma (0.25%) did not increase the rate of cell entry into the S phase. Thus, the induction of DNA synthesis in quiescent BALB/c 3T3 cells can be resolved into at least two phases, controlled by different serum components: (i) competence, induced by the platelet-derived growth factor; and (ii) progression of competent cells into the cell cycle, mediated by factors in platelet-poor plasma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC431967 | PMC |
http://dx.doi.org/10.1073/pnas.74.10.4481 | DOI Listing |
Biomater Adv
January 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico. Electronic address:
Current hemodialysis treatments can cause adverse effects, many of which are linked to the membranes used in the process. These issues are being addressed through new materials and technologies, making it urgent to establish minimum guidelines for evaluating such membranes. This review proposes standardizing the biological tests and variables to evaluate the performance of new membranes, aiming to replicate hemodialysis conditions closely.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
December 2024
From the Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
Background: Red blood cell (RBC) aggregation can be initiated by calcium and tissue factor, which may independently contribute to microvascular and macrovascular thrombosis after injury and transfusion. Previous studies have demonstrated that increased blood storage duration may contribute to thrombotic events. The aims of this study were to first determine the effect of blood product components, age, and hematocrit (HCT) on the aggregability of RBCs, followed by measurement of RBC aggregability in two specific injury models including traumatic brain injury (TBI) and hemorrhagic shock.
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
Department of Dermatology, Weill Cornell Medicine, New York City, New York. Electronic address:
Vet Sci
December 2024
Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy.
(SP) is a commensal and opportunistic pathogen of skin and mucosal surfaces, isolated from healthy dogs and from canine pyoderma cases. It has recently gained attention due to its increasing antibiotic resistance. Platelet-rich plasma (PRP) is a biological product, obtained through a blood centrifugation process, which has antibacterial properties evidenced by in vitro and in vivo studies conducted in both the human and veterinary field.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Associated Tissue Bank, Faculty of Medicine, P.J. Safarik University and L. Pasteur University Hospital in Kosice, Tr. SNP 1, Kosice, 04011, Slovakia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!