In order to maximize foraging efficiency in a varying environment, predators are expected to optimize their search strategy. Environmental conditions are one important factor affecting these movement patterns, but variations in breeding constraints (self-feeding vs. feeding young and self-feeding) during different breeding stages (incubation vs. chick-rearing) are often overlooked, so that the mechanisms responsible for such behavioral shifts are still unknown. Here, to test how search patterns are affected at different breeding stages and to explore the proximate causes of these variations, we deployed data loggers to record both position (global positioning system) and dive activity (time-depth recorders) of a colonial breeding seabird, the razorbill . Over a period of 3 years, our recordings of 56 foraging trips from 18 breeders show that while there is no evidence for individual route fidelity, razorbills exhibit higher foraging flexibility during incubation than during chick rearing, when foraging becomes more focused on an area of high primary productivity. We further show that this behavioral shift is not due to a shift in search patterns, as reorientations during foraging are independent of breeding stage. Our results suggest that foraging flexibility and search patterns are unlinked, perhaps because birds can read cues from their environment, including conspecifics, to optimize their foraging efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791460PMC
http://dx.doi.org/10.1007/s00227-016-2826-xDOI Listing

Publication Analysis

Top Keywords

search patterns
16
foraging flexibility
12
foraging
8
flexibility search
8
patterns unlinked
8
foraging efficiency
8
breeding stages
8
breeding
6
search
5
patterns
5

Similar Publications

Background: Attention-deficit/hyperactivity disorder (ADHD) is a common neuro-developmental disorder that often persists into adulthood. Moreover, it is frequently accompanied by bipolar disorder (BD) as well as borderline personality disorder (BPD). It is unclear whether these disorders share underlying pathomechanisms, given that all three are characterized by alterations in affective states, either long or short-term.

View Article and Find Full Text PDF

Chimp optimization algorithm (CHOA) is a recently developed nature-inspired technique that mimics the swarm intelligence of chimpanzee colonies. However, the original CHOA suffers from slow convergence and a tendency to reach local optima when dealing with multidimensional problems. To address these limitations, we propose TASR-CHOA, a twofold adaptive stochastic reinforced variant.

View Article and Find Full Text PDF

Optimization of microwave components using machine learning and rapid sensitivity analysis.

Sci Rep

December 2024

Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, 80-233, Poland.

Recent years have witnessed a tremendous popularity growth of optimization methods in high-frequency electronics, including microwave design. With the increasing complexity of passive microwave components, meticulous tuning of their geometry parameters has become imperative to fulfill demands imposed by the diverse application areas. More and more often, achieving the best possible performance requires global optimization.

View Article and Find Full Text PDF

Efficient searches are guided by target-distractor distinctiveness: the greater the distinctiveness, the faster the search. Previous research showed that when the target and distractors differ along both color and shape dimensions (i.e.

View Article and Find Full Text PDF

Background: Effective communication with patients and their families is a fundamental skill for medical students to cultivate during their undergraduate training. However, communicating with pediatric patients presents unique challenges. This study investigated the perceptions, attitudes, and confidence levels of undergraduate medical students regarding communication skills in pediatrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!