Kisspeptin, the neuropeptide product of the Kiss1 gene, is critical in driving the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (Arc) of the hypothalamus mediate differential effects, with the Arc regulating negative feedback of sex steroids and the AVPV regulating positive feedback, vital for the preovulatory surge and gated under circadian control. We aimed to characterize hypothalamic Kiss1 and Kiss1r mRNA expression in nonpregnant and pregnant mice, and investigate potential circadian regulation. Anterior and posterior hypothalami were collected from C57BL/6J mice at diestrus, proestrus, and days 6, 10, 14, and 18 of pregnancy, at six time points across 24h, for real-time PCR analysis of gene expression. Analysis confirmed that Kiss1 mRNA expression in the AVPV increased at ZT13 during proestrus, with a luteinizing hormone surge observed thereafter. No diurnal regulation was seen at diestrus or at any stage of pregnancy. Anterior hypothalamic Avp mRNA expression exhibited no diurnal variation, but Avpr1a peaked at 12:00h during proestrus, possibly reflecting the circadian input from the suprachiasmatic nucleus to AVPV Kiss1 neurons. Rfrp (Npvf) expression in the posterior hypothalamus did not demonstrate diurnal variation at any stage. Clock genes Bmal1 and Rev-erbα were strongly diurnal, but there was little change between diestrus/proestrus and pregnancy. Our data indicate the absence of the circadian input to Kiss1 in pregnancy, despite high gestational estradiol levels and normal clock gene expression, and may suggest a disruption of a kisspeptin-specific diurnal rhythm that operates in the nonpregnant state.

Download full-text PDF

Source
http://dx.doi.org/10.1530/JOE-16-0086DOI Listing

Publication Analysis

Top Keywords

mrna expression
12
diurnal regulation
8
nucleus avpv
8
gene expression
8
diurnal variation
8
circadian input
8
diurnal
6
expression
6
pregnancy
5
kiss1
5

Similar Publications

Quantitative Proteomics Identifies Profilin-1 as a Pseudouridine-Binding Protein.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Riverside, California 92521-0403, United States.

Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.

View Article and Find Full Text PDF

Bioinformatics Analysis Reveals Microrchidia Family Genes as the Prognostic and Therapeutic Markers for Colorectal Cancer.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.

Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).

Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.

View Article and Find Full Text PDF

Background: The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2 (PLD2) exerted a regulatory effect on neutrophil migration, thereby alleviating the progression of acute pancreatitis.

Aim: To elucidate the clinical mechanism through which PLD2 exerted a regulatory effect on neutrophil migration, thereby alleviating the progression of acute pancreatitis.

Methods: The study involved 90 patients diagnosed with acute pancreatitis, admitted to our hospital between March 2020 and November 2022.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a congenital multisystem disorder characterized by early-onset bone marrow failure (BMF) and cancer susceptibility. While gene addition and repair therapies are being considered as treatment options, depleted hematopoietic stem cell (HSC) pools, poor HSC mobilization, compromised survival during transduction, and increased sensitivity to conventional conditioning strategies limit eligibility for FA patients to receive gene therapies. As an alternative approach, we explored protein replacement by mRNA delivery via lipid nanoparticles (LNPs).

View Article and Find Full Text PDF

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!