AI Article Synopsis

  • The study aimed to establish a Multiple Criteria Decision Making model for prioritizing health technology assessments in Iran, amidst the growing use of health technologies for disease diagnosis and treatment.
  • Using a combination of medical databases and expert feedback, researchers identified nine criteria important for evaluating health technologies and calculated their relative weights.
  • The TOPSIS model was tested on three technologies, revealing that tissue plasminogen activator was the top priority, followed by adenosine, demonstrating the model's practical applicability.

Article Abstract

Background: In recent times, the use of health technologies in the diagnosis and treatment of diseases experienced considerable and accelerated growth. The goal of the present study was to describe the designated pilot MCDM (Multiple Criteria Decision Making) model for priority setting of health technology assessment in Iran.

Methods: Relevant articles were sought and retrieved from the most appropriate medical databases, including the Cochrane Library, PubMed and Scopus via three separate search strategies, using MESH and free text until March, 2015. Retrieved criteria were questioned from health technology assessment experts in two rounds and the relative weight for valid criteria was finally obtained from paired wise comparison method. After extraction of relative weights based on the aforementioned procedure, TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) priority setting model was designed. The stated model was applied for assessing three technologies (adenosine, tissue plasminogen activator and mechanical thrombectomy) which were available for projects call of Iranian health technology assessment department in order to determine applicability of the model for practical purpose.

Results: Nine criteria, including efficiency/effectiveness, safety, population size, vulnerable population size, availability of alternative technologies, cost effectiveness in other countries, budget impact, financial protection, quality of evidence, were extracted by the Iranian health technology assessment experts. The relative weights of these criteria were as follows 0.12, 0.2, 0.06, 0.08, 0.08, 0.13, 0.08, 0.09, and 0.15, respectively. Finally TOPSIS pilot model was designed by three health technologies and nine criteria relative weights. Results showed that, the applicability of the stated model was suitable and as the pilot testing, tissue plasminogen activator was the first priority, adenosine was second and mechanical thrombectomy was third for performing health technology assessment by the Iranian ministry of health and medical education.

Conclusion: According to the results of this study, this model with nine effective criteria and their relative weights and in combination with TOPSIS approach could be used with suitable applicability by health technology assessment department in deputy of curative affairs and food and drug organization for determination of research priorities in health technology assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827190PMC
http://dx.doi.org/10.1186/s40199-016-0148-7DOI Listing

Publication Analysis

Top Keywords

health technology
32
technology assessment
32
relative weights
16
priority setting
12
health
11
model
8
model priority
8
setting health
8
technology
8
assessment
8

Similar Publications

Plasma phosphorylated tau biomarkers open unprecedented opportunities for identifying carriers of Alzheimer's disease pathophysiology in early disease stages using minimally invasive techniques. Plasma p-tau biomarkers are believed to reflect tau phosphorylation and secretion. However, it remains unclear to what extent the magnitude of plasma p-tau abnormalities reflects neuronal network disturbance in the form of cognitive impairment.

View Article and Find Full Text PDF

Exploring the Credibility of Large Language Models for Mental Health Support: Protocol for a Scoping Review.

JMIR Res Protoc

January 2025

Data and Web Science Group, School of Business Informatics and Mathematics, University of Manneim, Mannheim, Germany.

Background: The rapid evolution of large language models (LLMs), such as Bidirectional Encoder Representations from Transformers (BERT; Google) and GPT (OpenAI), has introduced significant advancements in natural language processing. These models are increasingly integrated into various applications, including mental health support. However, the credibility of LLMs in providing reliable and explainable mental health information and support remains underexplored.

View Article and Find Full Text PDF

Background: Psychologists have developed frameworks to understand many constructs, which have subsequently informed the design of digital mental health interventions (DMHIs) aimed at improving mental health outcomes. The science of happiness is one such domain that holds significant applied importance due to its links to well-being and evidence that happiness can be cultivated through interventions. However, as with many constructs, the unique ways in which individuals experience happiness present major challenges for designing personalized DMHIs.

View Article and Find Full Text PDF

Background: Lifestyle interventions have been acknowledged as effective strategies for preventing type 2 diabetes mellitus (T2DM). However, the accessibility of conventional face-to-face interventions is often limited. Digital health intervention has been suggested as a potential solution to overcome the limitation.

View Article and Find Full Text PDF

Data collected from scholars across twenty-three countries over the past decade (2010-2019) reveals a 40% decrease in financial support for medicinal chemistry projects. The decline is especially notable among projects focused on small organic molecules. This drop in grants indicates a troubling trend that could jeopardize future drug development by undermining research in this crucial field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!