Background: Prevalence and severity of cow's milk protein allergy (CMA) in infants are increasing. A proportion of infants with CMA still elicit signs and symptoms of CMA while ingesting commercial amino acid-based formulas (AAFs). We propose that protein in glucose polymers (GPs) derived from corn starch in the AAFs might be the cause of intolerance to AAF in some infants. We thus have produced small molecules of GPs from rice starch, eliminating the protein fraction from them, and subsequently used them as the sole source of carbohydrate in a new amino acid-based formula (NAAF).
Methods: The efficacy of the NAAF was compared with that of an AAF in a double-blind, placebo-controlled food challenge (DBPCFC) in young infants with CMA aged <4 months. Infants consumed each formula for 14 days before switching to the other one. If no respiratory, dermatologic, and gastrointestinal symptom occurred, it was considered tolerance. After the challenge, infants consumed the tolerated formula for 4 weeks to prove real tolerance to that formula.
Results: Of 46 infants, 23 were intolerant to the AAF, of whom 7 (30.4%) were also intolerant to the NAAF. Sixteen of the 23 infants who were intolerant to the AAF could tolerate the NAAF ( P < .05). The minimal important difference of decreasing percentage of intolerance to the NAAF was 34.8% compared with the infants who were intolerant to the AAF.
Conclusion: The NAAF is better tolerated than a commercially available AAF for the management of infants with CMA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0884533616639108 | DOI Listing |
Int J Mol Sci
December 2024
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China.
Marine microalgae are a rich source of natural products, and their amino acid-based antimicrobial agents are usually obtained by enzymatic hydrolysis, which is inefficient and limits the research on antimicrobial peptides (AMPs) from microalgae. In this study, is used as a model to predict antimicrobial peptides through high-throughput methods, and 471 putative peptides are identified based on the de novo transcriptome technique. Among them, three short peptides, P1, P6, and P7 were found to have antimicrobial activity against , , , and yeast , and they showed no hemolytic activity even at higher concentrations up to 10 mg/mL.
View Article and Find Full Text PDFLife (Basel)
November 2024
Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Amino acids are basic building blocks of structural proteins and enzymes. They also act as signaling molecules and as fuel. They are characterized as essential if sufficient quantities must be supplied exogenously or as non-essential if they can be endogenously synthesized.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
Gastroenterol Rep (Oxf)
December 2024
[This corrects the article DOI: 10.1093/gastro/goad072.].
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
Introduction: is the most prevalent enteric protozoan parasite causing infectious diarrhea in neonatal calves worldwide with a direct negative impact on their health and welfare. This study utilized next-generation sequencing (NGS) to deepen our understanding of intestinal epithelial barriers and transport mechanisms in the pathophysiology of infectious diarrhea in neonatal calves, which could potentially unveil novel solutions for treatment.
Methods: At day 1 of life, male Holstein-Friesian calves were either orally infected (n = 5) or not (control group, n = 5) with oocysts (in-house strain LE-01-Cp-15).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!