AI Article Synopsis

  • Autophagy plays a complex role in cancer, promoting tumor progression linked to KRAS activation while also inhibiting inflammation and tissue abnormalities.
  • In a study using a mouse model of pancreatitis, researchers found that loss of autophagy led to increased inflammation and immune cell infiltration, correlating with heightened levels of PD-L1, a protein that helps tumors evade immune detection.
  • The study suggests that blocking autophagy not only enhances inflammation but also offers a potential therapeutic strategy by using inhibitors like CYT387 to reduce tumor growth and immune evasion in pancreatic cancer.

Article Abstract

Autophagy promotes tumor progression downstream of oncogenic KRAS, yet also restrains inflammation and dysplasia through mechanisms that remain incompletely characterized. Understanding the basis of this paradox has important implications for the optimal targeting of autophagy in cancer. Using a mouse model of cerulein-induced pancreatitis, we found that loss of autophagy by deletion of Atg5 enhanced activation of the IκB kinase (IKK)-related kinase TBK1 in vivo, associated with increased neutrophil and T-cell infiltration and PD-L1 upregulation. Consistent with this observation, pharmacologic or genetic inhibition of autophagy in pancreatic ductal adenocarcinoma cells, including suppression of the autophagy receptors NDP52 or p62, prolonged TBK1 activation and increased expression of CCL5, IL6, and several other T-cell and neutrophil chemotactic cytokines in vitro Defective autophagy also promoted PD-L1 upregulation, which is particularly pronounced downstream of IFNγ signaling and involves JAK pathway activation. Treatment with the TBK1/IKKε/JAK inhibitor CYT387 (also known as momelotinib) not only inhibits autophagy, but also suppresses this feedback inflammation and reduces PD-L1 expression, limiting KRAS-driven pancreatic dysplasia. These findings could contribute to the dual role of autophagy in oncogenesis and have important consequences for its therapeutic targeting. Cancer Immunol Res; 4(6); 520-30. ©2016 AACR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891226PMC
http://dx.doi.org/10.1158/2326-6066.CIR-15-0235DOI Listing

Publication Analysis

Top Keywords

autophagy
9
pd-l1 upregulation
8
autophagy inhibition
4
inhibition dysregulates
4
dysregulates tbk1
4
tbk1 signaling
4
signaling promotes
4
promotes pancreatic
4
pancreatic inflammation
4
inflammation autophagy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!