Strategies for clinical trials in type 1 diabetes.

J Autoimmun

Clinical Trials Group, Immune Tolerance Network, 185 Berry Street, Suite 3515, San Francisco, CA, 94107, USA. Electronic address:

Published: July 2016

During the past one to two decades, substantial progress has been made in our understanding of the immunopathology of type 1 diabetes (T1D) and the potential for immune interventions that can alter the natural history of the disease. This progress has resulted from the use of standardized study designs, endpoints, and, to a certain extent, mechanistic analyses in intervention trials in the setting of new-onset T1D. To date, most of these trials have involved single-agent interventions but, increasingly, future trials will test therapeutic combinations that are based on a compelling scientific rationale and testable mechanistic hypotheses. These increasingly complex trials will benefit from novel trial designs (such as factorial or adaptive designs), enhanced clinical endpoints that more directly assess islet pathology (such as β-cell death assays and islet or pancreatic imaging), improved responder analyses, and sophisticated mechanistic assays that provide deep phenotyping of lymphocyte subsets, gene expression profiling, in vitro T cell functional assessments, and antigen-specific responses. With this developing armamentarium of enhanced trial designs, endpoints, and clinical and mechanistic response analyses, we can expect substantial progress in better understanding the breakdown in immunologic tolerance in T1D and how to restore it to achieve significant and long-lasting preservation of islet function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4903883PMC
http://dx.doi.org/10.1016/j.jaut.2016.03.008DOI Listing

Publication Analysis

Top Keywords

type diabetes
8
substantial progress
8
designs endpoints
8
trials will
8
trial designs
8
trials
5
strategies clinical
4
clinical trials
4
trials type
4
diabetes decades
4

Similar Publications

The objectives of the study were to: 1) Describe characteristics and lifestyle factors of individuals who have achieved type 2 diabetes (T2D) remission (sub-diabetes glucose levels without glucose-lowering medications for ≥3 months) through changes to diet and exercise behaviour in real-world settings; 2) Investigate continuous glucose monitoring (CGM) profiles of these individuals and explore how dietary pattern may influence glucose regulation metrics. This cross-sectional study recruited individuals living with T2D who achieved remission via changes to diet or exercise behaviours. Various questionnaires were used to assess overall health and participants wore a blinded CGM for 14 days to assess glucose profiles and filled out three-day food records.

View Article and Find Full Text PDF

Bone mineral density (BMD), an important marker of bone health, is regulated by a complex interaction of proteins. Plasma proteomic analyses can contribute to identification of proteins associated with changes in BMD. This may be especially informative in stages of bone accrual and peak BMD achievement (i.

View Article and Find Full Text PDF

Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.

View Article and Find Full Text PDF

Unlabelled: LCN2 has an osteokine important for appetite regulation; in type 2 diabetes (T2D) it is not known whether appetite regulation mediated by LCN2 in the brain is altered. In this work, we focus on exploring the role of blocking LCN2 in metabolic health and appetite regulation within the central nervous system of mice with T2D.

Material And Methods: 4-week-old male C57BL/6 mice were used, divided into four experimental groups: intact, T2D, TD2/anti-LCN2, and T2D/IgG as isotype control.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is an important risk factor for brain cognitive impairment, but the specific mechanism is still unclear. The imbalance of gut microbiota under pathological conditions (such as an increase in pathogenic bacteria) may be involved in the occurrence of various diseases. The purpose of this study is to investigate the effect of increased abundance of gut Citrobacter rodentium on cognitive function in T2D mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!