In this study, flatfish byproducts were hydrolyzed by Protamex at high hydrostatic pressure and glycosylated with ribose to utilize the protein of flatfish byproducts as a nutraceutical. We investigated the anti-inflammatory effects of glycosylated fish byproduct protein hydrolysate (GFPH) and its anti-inflammatory mechanisms were elucidated in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophage. The results showed that GFPH suppresses LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) dose-dependently. The enzyme-linked immunosorbent assay (ELISA) kit clearly demonstrated that GFPH significantly reduced the production of pro-inflammatory cytokines such as, interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1. Moreover, GFPH reduced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. These results indicate that the inhibitory effects of GFPH on LPS-induced NO and PGE2 production might be due to the suppression of the NF-κB and MAPKs signaling pathways. Therefore, these results suggest that flatfish byproducts are latent bioactive resources and GFPH may have potential as a therapeutic agent in the treatment of various inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5fo01557j | DOI Listing |
Int J Mol Sci
April 2024
Inha Research Institute for Aerospace Medicine, Inha University, Incheon 22212, Republic of Korea.
This study explores olive flounder by-product Prozyme2000P (OFBP) hydrolysate as a potential treatment for age-related kidney decline. Ferroptosis, a form of cell death linked to iron overload and oxidative stress, is increasingly implicated in aging kidneys. We investigated whether OFBP could inhibit ferroptosis and improve kidney health.
View Article and Find Full Text PDFMar Drugs
December 2023
Seafood Research Center, Silla University, Busan 49277, Republic of Korea.
Fish head byproducts derived from surimi processing contribute about 15% of the total body weight, which are beneficial to health because they contain essential nutrients. In this study, olive flounder (OF) was the target species in order to maximize the byproduct utilization. In RAW 264.
View Article and Find Full Text PDFMar Drugs
January 2023
3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal.
The industrial processing of fish for food purposes also generates a considerable number of by-products such as viscera, bones, scales, and skin. From a value-added perspective, fish by-products can act also as raw materials, especially because of their collagen content (particularly in fish skin). Interestingly, the potential of marine collagen for cosmetic applications is enormous and, remarkably, the extraction of this protein from fish skins has been established for different species.
View Article and Find Full Text PDFFish Physiol Biochem
December 2022
Feeds and Foods Nutrition Research Center, Pukyong National University, Busan, 48574, Republic of Korea.
This study examined the effects of feeding fermented tuna by-product (FTBP) on the growth, non-specific immune response, liver and intestinal morphology, and disease resistance of olive flounder Paralichthys olivaceus. Olive flounders (n = 20; 2 g) were randomly assigned into four dietary groups in triplicates. Fish were fed four test diets (50% crude protein; 10% crude lipid) for 10 weeks in which unprocessed tuna by-product (TBP) meal was replaced (on a protein basis) with 0% (FTBP0 as the control diet), 15% (FTBP15), 30% (FTBP30), and 60% (FTBP60) of FTBP protein.
View Article and Find Full Text PDFJ Food Sci
January 2022
Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China.
In this study, halibut bone, a byproduct of Greenland halibut processing, was prepared into a thick soup through a non-frying process. The formation of colloidal micro-nano particles and flavor characteristics in halibut bone soup was explored. The results showed that the nutrients in halibut bones migrated to the soup continuously with the cooking process and reached the highest concentration (total sugars, 38.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!