1. Both dietary magnesium depletion and potassium depletion (confirmed by tissue analysis) were induced in rats which were then compared with rats treated with chlorothiazide (250 mg/kg diet) and rats on a control synthetic diet. 2. Brain and muscle intracellular pH was measured by using a surface coil and [31P]-NMR to measure the chemical shift of inorganic phosphate. pH was also measured in isolated perfused hearts from control and magnesium-deficient rats. Intracellular magnesium status was assessed by measuring the chemical shift of beta-ATP in brain. 3. There was no evidence for magnesium deficiency in the chlorothiazide-treated rats on tissue analysis or on chemical shift of beta-ATP in brain. Both magnesium and potassium deficiency, but not chlorothiazide treatment, were associated with an extracellular alkalosis. 4. Magnesium deficiency led to an intracellular alkalosis in brain, muscle and heart. Chlorothiazide treatment led to an alkalosis in brain. Potassium deficiency was associated with a normal intracellular pH in brain and muscle. 5. Magnesium depletion and chlorothiazide treatment produce intracellular alkalosis by unknown mechanism(s).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1681.1989.tb01906.x | DOI Listing |
Biochemistry
January 2025
Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States.
Metal ions are essential for all life. In microbial cells, potassium (K) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor.
View Article and Find Full Text PDFNutrients
December 2024
Center for Magnesium Education and Research, Pahoa, HI 96778, USA.
In the past 20 years, a large number of epidemiological studies, randomized controlled trials, and meta-analyses have found an inverse relationship between magnesium intake or serum magnesium and cardiovascular disease, indicating that low magnesium status is associated with hypertension, coronary artery calcification, stroke, ischemic heart disease, atrial fibrillation, heart failure, and cardiac mortality. Controlled metabolic unit human depletion-repletion experiments found that a mild or moderate magnesium deficiency can cause physiological and metabolic changes that respond to magnesium supplementation, which indicates that these types of deficiencies or chronic latent magnesium deficiency are contributing factors to the occurrence and severity of cardiovascular disease. Mechanisms through which a mild or moderate magnesium deficiency can contribute to this risk include inflammatory stress, oxidative stress, dyslipidemia and deranged lipid metabolism, endothelial dysfunction, and dysregulation of cellular ion channels, transporters, and signaling.
View Article and Find Full Text PDFGenetics
December 2024
Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
Mitochondrial membrane phospholipid cardiolipin is essential for the stability of several inner mitochondrial membrane protein complexes. We recently showed that the abundance of mitochondrial magnesium channel MRS2 is reduced in models of Barth syndrome, an X-linked genetic disorder caused by a remodeling defect in cardiolipin. However, the mechanism underlying the reduced abundance of MRS2 in cardiolipin-depleted mitochondria remained unknown.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China.
Drinking water is an essential daily intake to hydrate the body. It is conceivable that water, when endowed with antioxidant properties, will be the most natural radical terminator surpassing conventional pill-based or food-derived antioxidants. However, current end-of-pipe purification of municipal water generally depletes minerals pivotal for antioxidant potency.
View Article and Find Full Text PDFNature
December 2024
Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
In the quest for environmental sustainability, the rising demand for electric vehicles and renewable energy technologies has substantially increased the need for efficient lithium extraction methods. Traditional lithium production, relying on geographically concentrated hard-rock ores and salar brines, is associated with considerable energy consumption, greenhouse gas emissions, groundwater depletion and land disturbance, thereby posing notable environmental and supply chain challenges. On the other hand, low-quality brines-such as those found in sedimentary waters, geothermal fluids, oilfield-produced waters, seawater and some salar brines and salt lakes-hold large potential owing to their extensive reserves and widespread geographical distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!