Increased urbanization worldwide has resulted in a substantial increase in energy and material consumption as well as anthropogenic waste generation. The main source for our current needs is petroleum refinery, which have grave impact over energy-environment nexus. Therefore, production of bioenergy and biomaterials have significant potential to contribute and need to meet the ever increasing demand. In this perspective, a biorefinery concept visualizes negative-valued waste as a potential renewable feedstock. This review illustrates different bioprocess based technological models that will pave sustainable avenues for the development of biobased society. The proposed models hypothesize closed loop approach wherein waste is valorised through a cascade of various biotechnological processes addressing circular economy. Biorefinery offers a sustainable green option to utilize waste and to produce a gamut of marketable bioproducts and bioenergy on par to petro-chemical refinery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2016.03.130 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Ciencias Químicas, Dirección de Investigaciones, Universidad Nacional de Asunción, P.O. 1055, San Lorenzo, Paraguay.
Concerns over malnutrition, synthetic additives and post-harvest waste highlight the need for innovation in food technology, turning towards underutilized crops. Plant-based beverages offer sustainable dietary alternatives and the increasing demand for such products makes the exploration of native crops particularly relevant. This study focuses on the development of a beverage derived from the native South American fruit kurugua (Sicana odorifera), combined with chia oil (Salvia hispanica L.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, School of the Environment, State Key Laboratory of Pollution Control & Resource Reuse, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
The escalating global fecal waste and rising CO levels present dual significant environmental challenges, further intensified by urbanization. Traditional fecal waste management methods are insufficient, particularly in addressing the related health risks and environmental threats. This study explores the synthesis of biochar from pig manure as a carbon substrate to disperse and stabilize Cu nanoparticles, resulting in the formation of an efficient Cu-NB-2000 electrocatalyst for electrocatalytic CO reduction (ECR).
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.
Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.
View Article and Find Full Text PDFJ Dent Sci
January 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Background/purpose: Salivary microbiome has become a surrogate indicator of oral disease due to its collective reservoirs and convenience in sampling. However, failed clinical trials often lead to wastes of resources, indicating a need for preclinical models. In this pilot study, we aimed to compare the salivary microbiome by metagenomics analysis before and after lysogeny broth culture for prospective translational studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!