In this work, we designed an amperometric catechol biosensor based on α-FeO nanocrystals (NCs) incorporated carbon-paste electrode. Laccase enzyme is then assembled onto the modified electrode surface to form a nanobiocomposite enhancing the electron transfer reactions at the enzyme's active metal centers for catechol oxidation. The biosensor gave good sensitivity with a linear detection response in the range of 8-800 μM with limit of detection 4.28 μM. We successfully employed the sensor for real water sample analysis. The results illustrate that the metal oxide NCs have enormous potential in the construction of biosensors for sensitive determination of phenol derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.3109/21691401.2016.1167702DOI Listing

Publication Analysis

Top Keywords

amperometric catechol
8
catechol biosensor
8
biosensor based
8
based α-feo
8
novel amperometric
4
α-feo nanocrystals-modified
4
nanocrystals-modified carbon
4
carbon paste
4
paste electrode
4
electrode work
4

Similar Publications

A compact organic electrochemical transistors (OECT) sensor enriched with carbon quantum dots (CQDs) was developed to enhance the transconductance of an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film, enabling the precise and selective detection of dopamine (DA). Accurate monitoring of DA levels is critical for diagnosing and managing related conditions. Incorporating CQDs, we have achieved a remarkable up to threefold increase in current at the DA detection peak in differential pulse voltammetry.

View Article and Find Full Text PDF

Polynorepinephrine and polydopamine-bacterial laccase coatings for phenolic amperometric biosensors.

Bioelectrochemistry

February 2025

Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

The successful fabrication of biosensors is greatly limited by the immobilization of their bioreceptor, thus we propose a facile and reproducible two-step method to modify graphite electrodes with a bacterial laccase, relying on a fast and controllable potentiostatic process to coat graphite surfaces with biomolecule-compatible thin films of polynorepinephrine (ePNE) and polydopamine (ePDA). Both polymers, synthesized with a similar thickness, were functionalized with bacterial laccase, displaying distinct electrochemical transducing behaviours at pH 5.0 and 7.

View Article and Find Full Text PDF

A novel strategy for the quantify of emerging isomeric pollutants belonging to the dihydroxybenzene family for environmental sample monitoring by amperometric detection.

Talanta

January 2025

Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 CP C1425FQB, Buenos Aires, Argentina. Electronic address:

This study introduces an innovative approach for quantifying isomeric pollutants utilizing an amperometric sensor. The determination of the isomers hydroquinone and catechol is based on the use of a glassy carbon electrode modified with Cu@PtPd/C nanoparticles (Cu@PtPd/C/GCE) in core-shell form, showing significant electrocatalytic activity in the oxidation of the later compounds. The determination was carried out at two different potentials: one at which where only hydroquinone is oxidized, and another in which where both hydroquinone and catechol are oxidized.

View Article and Find Full Text PDF

New voltammetric and flow amperometric methods for the determination of guaifenesin (GFE) using a perspective screen-printed sensor (SPE) with boron-doped diamond electrode (BDDE) were developed. The electrochemical oxidation of GFE was studied on the surface of the oxygen-terminated BDDE of the sensor. The GFE provided two irreversible anodic signals at a potential of 1.

View Article and Find Full Text PDF

The pungency of chili peppers, the most popular hot spice used worldwide, is caused by capsaicinoids (CPDs), the content of which can vary greatly due to varietal differences and growing conditions. For the first time, a novel simple method for the fast determination of CPDs in chili peppers and chili products was developed based on adsorptive transfer cyclic square-wave voltammetry (AdTCSWV), using adsorption of lipophilic CPDs on an unmodified glassy carbon electrode surface from methanolic extracts of chili pepper samples. The CSWV is based on short oxidation of adsorbed CPDs to quinoid products, and their subsequent reduction and re-oxidation to provide specific analytical signals with a linear range from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!