Brg1 directly regulates Olig2 transcription and is required for oligodendrocyte progenitor cell specification.

Dev Biol

Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave., Beaverton, OR 97006, USA; Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA. Electronic address:

Published: May 2016

The Olig2 basic-helix-loop-helix transcription factor promotes oligodendrocyte specification in early neural progenitor cells (NPCs), including radial glial cells, in part by recruiting SWI/SNF chromatin remodeling complexes to the enhancers of genes involved in oligodendrocyte differentiation. How Olig2 expression is regulated during oligodendrogliogenesis is not clear. Here, we find that the Brg1 subunit of SWI/SNF complexes interacts with a proximal Olig2 promoter and represses Olig2 transcription in the mouse cortex at E14, when oligodendrocyte progenitors (OPCs) are not yet found in this location. Brg1 does not interact with the Olig2 promoter in the E14 ganglionic eminence, where NPCs differentiate into Olig2-positive OPCs. Consistent with these findings, Brg1-null NPCs demonstrate precocious expression of Olig2 in the cortex. However, these cells fail to differentiate into OPCs. We further find that Brg1 is necessary for neuroepithelial-to-radial glial cell transition, but not neuronal differentiation despite a reduction in expression of the pro-neural transcription factor Pax6. Collectively, these and earlier findings support a model whereby Brg1 promotes neurogenic radial glial progenitor cell specification but is dispensable for neuronal differentiation. Concurrently, Brg1 represses Olig2 expression and the specification of OPCs, but is required for OPC differentiation and oligodendrocyte maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851915PMC
http://dx.doi.org/10.1016/j.ydbio.2016.04.003DOI Listing

Publication Analysis

Top Keywords

olig2
8
olig2 transcription
8
progenitor cell
8
cell specification
8
transcription factor
8
radial glial
8
olig2 expression
8
find brg1
8
olig2 promoter
8
represses olig2
8

Similar Publications

Ganglioglioma, a glioneuronal neoplasm, typically presents in adolescents' temporal lobes. While pediatric brainstem gangliogliomas (BSGGs) are well documented, adult BSGGs are limited, resulting in a lack of comprehensive understanding of their pathophysiology and prognosis. A 41-year-old woman who presented with dizziness and numbness in her right upper extremity and right face underwent radiological examination.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) has been shown in multiple studies to be associated with the estimated glomerular filtration rate (eGFR). However, studies focusing on Chinese populations are lacking. We conducted an epigenome-wide association study to investigate the association between DNAm and eGFR in Chinese monozygotic twins.

View Article and Find Full Text PDF

Myelination facilitates the rapid conduction of action potentials along axons. In the central nervous system (CNS), myelinated axons vary over 100-fold in diameter, with conduction speed scaling linearly with increasing diameter. Axon diameter and myelination are closely interlinked, with axon diameter exerting a strong influence on myelination.

View Article and Find Full Text PDF

Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.

View Article and Find Full Text PDF

Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!