Beyond the classic eicosanoids: Peripherally-acting oxygenated metabolites of polyunsaturated fatty acids mediate pain associated with tissue injury and inflammation.

Prostaglandins Leukot Essent Fatty Acids

Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Abba Khoushy Ave, Mount Carmel, Haifa 3498838, Israel.

Published: August 2016

Pain is a complex sensation that may be protective or cause undue suffering and loss of function, depending on the circumstances. Peripheral nociceptor neurons (PNs) innervate most tissues, and express ion channels, nocisensors, which depolarize the cell in response to intense stimuli and numerous substances. Inflamed tissues manifest inflammatory hyperalgesia in which the threshold for pain and the response to painful stimuli are decreased and increased, respectively. Constituents of the inflammatory milieu sensitize PNs, thereby contributing to hyperalgesia. Polyunsaturated fatty acids undergo enzymatic and free radical-mediated oxygenation into an array of bioactive metabolites, oxygenated polyunsaturated fatty acids (oxy-PUFAs), including the classic eicosanoids. Oxy-PUFA production is enhanced during inflammation. Pioneering studies by Vane and colleagues from the early 1970s first implicated classic eicosanoids in the pain associated with inflammation. Here, we review the production and action of oxy-PUFAs that are not classic eicosanoids, but nevertheless are produced in injured/ inflamed tissues and activate or sensitize PNs. In general, oxy-PUFAs that sensitize PNs may do so directly, by activation of nocisensors, ion channels or GPCRs expressed on the surface of PNs, or indirectly, by increasing the production of inflammatory mediators that activate or sensitize PNs. We focus on oxy-PUFAs that act directly on PNs. Specifically, we discuss the role of arachidonic acid-derived 12S-HpETE, HNE, ONE, PGA2, iso-PGA2 and 15d-PGJ2, 5,6-and 8,9-EET, PGE2-G and 8R,15S-diHETE, as well as the linoleic acid-derived 9-and 13-HODE in inducing acute nocifensive behavior and/or inflammatory hyperalgesia in rodents. The nocisensors TRPV1, TRPV4 and TRPA1, and putative Gαs-type GPCRs are the PN targets of these oxy-PUFAs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plefa.2016.03.001DOI Listing

Publication Analysis

Top Keywords

classic eicosanoids
16
sensitize pns
16
polyunsaturated fatty
12
fatty acids
12
pain associated
8
ion channels
8
inflamed tissues
8
inflammatory hyperalgesia
8
activate sensitize
8
pns
7

Similar Publications

Plasmalogens in Innate Immune Cells: From Arachidonate Signaling to Ferroptosis.

Biomolecules

November 2024

Instituto de Biología y Geneética Molecular, Consejo Superior de Investigaciones Científicas Uva, 47003 Valladolid, Spain.

Polyunsaturated fatty acids such as arachidonic acid are indispensable components of innate immune signaling. Plasmalogens are glycerophospholipids with a vinyl ether bond in the sn-1 position of the glycerol backbone instead of the more common sn-1 ester bond present in "classical" glycerophospholipids. This kind of phospholipid is particularly rich in polyunsaturated fatty acids, especially arachidonic acid.

View Article and Find Full Text PDF

This review focuses on the recently discovered specific action of two classical endocannabinoids (ECs), 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA), in the case of their synthesis and degradation in skeletal muscles; in other words, this review is dedicated to properties and action of the myoendocannabinoid (myoEC) pool. Influence of this pool is considered at three different levels: at the level of skeletal muscles, motor synapses, and also at the level of the whole organism, including central nervous system. Special attention is paid to the still significantly underestimated and intriguing ability of ECs to have positive effect on energy exchange and contractile activity of muscle fibers, as well as on transmitter secretion in motor synapses.

View Article and Find Full Text PDF

Functional bias of contractile control in mouse resistance arteries.

Sci Rep

October 2024

Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.

Constrictor agonists set arterial tone through two coupling processes, one tied to (electromechanical), the other independent (pharmacomechanical) of, membrane potential (V). This dual arrangement raises an intriguing question: is the contribution of each mechanism (1) fixed and proportionate, or (2) variable and functionally biased. Examination began in mouse mesenteric arteries with a vasomotor assessment to a classic G (phenylephrine) or G/G (U46619) agonist, in the absence and presence of nifedipine, to separate among the two coupling mechanisms.

View Article and Find Full Text PDF

Background: The dietary requirement for α-linolenic acid (ALA) remains unclear, as evidenced by the absence of a Recommended Dietary Allowance (RDA) for this essential fatty acid (FA). In previous studies, we observed that the amount of dietary ALA required to maximize nonesterified (NE) DHA oxylipins appears to be higher than the amount required to maximize tissue esterified DHA, which have classically been used to estimate the ALA requirement. Further, we observed that dietary ALA reduces esterified arachidonic acid (ARA) and its NE oxylipins.

View Article and Find Full Text PDF

Development and Validation of Methodologies for the Identification of Specialized Pro-Resolving Lipid Mediators and Classic Eicosanoids in Biological Matrices.

J Am Soc Mass Spectrom

October 2024

Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.

Lipid mediators, which include specialized pro-resolving mediators and classic eicosanoids, are pivotal in both initiating and resolving inflammation. The regulation of these molecules determines whether inflammation resolves naturally or persists. However, our understanding of how these mediators are regulated over time in various inflammatory contexts is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!