Background & Aims: Currently, staging of fibrosis in preclinical rodent liver fibrosis models is achieved histologically. Many animals are used at multiple time-points to assess disease progression or therapeutic responses. Hepatic myofibroblasts promote liver fibrosis therefore quantifying these cells in vivo could assess disease or predict therapeutic responses in mice. We fluorescently labelled a single chain antibody (C1-3) that binds hepatic myofibroblasts to monitor fibrogenesis in vivo.
Methods: CCl4 was used to induce acute liver injury in WT and cRel(-/-) mice. Bile duct ligation was used to model chronic fibrosis. Hepatic myofibroblasts were depleted using a liposome-drug delivery system or chemically with sulfasalazine. An IVIS® spectrum visualised fluorophore-conjugated C1-3 in vivo.
Results: IVIS detection of fluorescently labelled-C1-3 but not a control antibody discriminates between fibrotic and non-fibrotic liver in acute and chronic liver fibrosis models. cRel(-/-) mice have a fibro-protective phenotype and IVIS signal is reduced in CCl4 injured cRel(-/-) mice compared to wild-type. In vivo imaging of fluorescently labelled-C1-3 successfully predicts reductions in hepatic myofibroblast numbers in fibrotic liver disease in response to therapy.
Conclusions: We report a novel fluorescence imaging method to assess murine hepatic myofibroblast numbers in vivo during liver fibrosis and after therapy. We also describe a novel liposomal antibody targeting system to selectively deliver drugs to hepatic myofibroblasts in vivo. C1-3 binds human hepatic myofibroblast therefore imaging labelled-C1-3 could be used for clinical studies in man to help stage fibrosis, demonstrate efficacy of drugs that promote hepatic myofibroblast clearance or predict early therapeutic responses.
Lay Summary: In response to damage and injury scars develop in the liver and the main cell that makes the scar tissue is the hepatic myofibroblast (HM). C1-3 is an antibody fragment that binds to the scar forming HM. We have fluorescently labelled C1-3 and given it to mice that have either normal or scarred livers (which contain HM) and then used a machine called an in vivo imaging system (IVIS) that takes pictures of different wavelengths of light, to visualise the antibody binding to HM inside the living mouse. Using fluorescently labelled C1-3 we can assess HM numbers in the injured liver and monitor response to therapy. We have also used C1-3 to target drugs encapsulated in lipid carriers (liposomes) to the HM to kill the HM and reduce the liver disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914605 | PMC |
http://dx.doi.org/10.1016/j.jhep.2016.03.021 | DOI Listing |
Cells
January 2025
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
Macrophages play important roles in metabolic dysfunction-associated steatohepatitis (MASH), an advanced and inflammatory stage of metabolic dysfunction-associated steatotic liver disease (MASLD). In humans and mice, the cellular heterogeneity and diverse function of hepatic macrophages in MASH have been investigated by single cell RNA sequencing (scRNA-seq). However, little is known about their roles in rats.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, 213200, Changzhou, Jiangsu, China.
One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratorio de Neuroinflamacion i2-06, Hospital Nacional de Paraplejicos, Finca La Peraleda s/n, Toledo, 45071, Spain.
Spinal cord injury (SCI) causes abnormal liver function, the development of metabolic dysfunction-associated steatotic liver disease features and metabolic impairment in patients. Experimental models also demonstrate acute and chronic changes in the liver that may, in turn, affect SCI recovery. These changes have collectively been proposed to contribute to the development of a SCI-induced metabolic dysfunction-associated steatohepatitis (MASH).
View Article and Find Full Text PDFHepatol Commun
November 2024
Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.
View Article and Find Full Text PDFJHEP Rep
January 2025
Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!