Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0734242X16640063 | DOI Listing |
J Environ Manage
December 2024
School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan, 572025, China. Electronic address:
Nutrient recovery from aquaculture sludge is vital for promoting hydroponic plant growth and achieving near-zero solid waste discharge in aquaponic systems. Modified biological aerated filters (MBAFs) are promising because of the dual capabilities of aquaculture sludge collection and aerobic mineralization. However, the bioconversion kinetics, which is indirectly related to the packed media, need to be improved.
View Article and Find Full Text PDFLancet Reg Health Eur
January 2025
Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands.
Background: Physiological-based cord clamping (PBCC) in preterm infants is beneficial for cardiovascular transition at birth and may optimize placental transfusion. Whether PBCC can improve clinical outcomes is unknown. The aim of the Aeration, Breathing, Clamping (ABC3) trial was to test whether PBCC results in improved intact survival in very preterm infants.
View Article and Find Full Text PDFWater Res
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Research and Application Centre for Membrane Technology, School of Environment, Tsinghua University, Beijing, 100084, China. Electronic address:
The integration of partial nitrification-anammox (PN/A) into membrane-aerated biofilm reactor (MABR) is a promisingly energy-efficient and high-efficiency technology for nitrogen removal. The inhibition of nitrite oxidizing bacteria (NOB) remains as the most significant challenge for its development. In our investigation, we proposed a novel process to integrate carriers to MABR (CMABR), which combined the carriers enriched with anaerobic ammonium-oxidizing bacteria (AnAOB) and partial nitrifying MABR system.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
Sludge mature compost (SMC) is notable for its high production, easy accessibility, and stable supply. This study investigated the impact of the SMC addition and different aeration rates on the humification and nitrogen fixing process during kitchen waste composting. The results demonstrated that addition of SMC prolonged the thermophilic phase, as a comparison, increased aeration shortened this phase.
View Article and Find Full Text PDFJ Clin Med
November 2024
Department of Anesthesiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
The intensity of respiratory treatment in acute respiratory distress syndrome (ARDS) is traditionally adjusted based on oxygenation severity, as defined by the mild, moderate, and severe Berlin classifications. However, ventilator-induced lung injury (VILI) is primarily determined by ventilator settings, namely tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP). All these variables, along with respiratory elastance, are included in the concept of mechanical power.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!