Piscidin-1 possesses significant antimicrobial and cytotoxic activities. To recognize the primary amino acid sequence(s) in piscidin-1 that could be important for its biological activity, a long heptad repeat sequence located in the region from amino acids 2 to 19 was identified. To comprehend the possible role of this motif, six analogs of piscidin-1 were designed by selectively replacing a single isoleucine residue at a d (5th) position or at an a (9th or 16th) position with either an alanine or a valine residue. Two more analogs, namely, I5F,F6A-piscidin-1 and V12I-piscidin-1, were designed for investigating the effect of interchanging an alanine residue at a d position with an adjacent phenylalanine residue and replacing a valine residue with an isoleucine residue at another d position of the heptad repeat of piscidin-1, respectively. Single alanine-substituted analogs exhibited significantly reduced cytotoxicity against mammalian cells compared with that of piscidin-1 but appreciably retained the antibacterial and antiendotoxin activities of piscidin-1. All the single valine-substituted piscidin-1 analogs and I5F,F6A-piscidin-1 showed cytotoxicity greater than that of the corresponding alanine-substituted analogs, antibacterial activity marginally greater than or similar to that of the corresponding alanine-substituted analogs, and also antiendotoxin activity superior to that of the corresponding alanine-substituted analogs. Interestingly, among these peptides, V12I-piscidin-1 showed the highest cytotoxicity and antibacterial and antiendotoxin activities. Lipopolysaccharide (12 mg/kg of body weight)-treated mice, further treated with I16A-piscidin-1, the piscidin-1 analog with the highest therapeutic index, at a single dose of 1 or 2 mg/kg of body weight, showed 80 and 100% survival, respectively. Structural and functional characterization of these peptides revealed the basis of their biological activity and demonstrated that nontoxic piscidin-1 analogs with significant antimicrobial and antiendotoxin activities can be designed by incorporating single alanine substitutions in the piscidin-1 heptad repeat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879410PMC
http://dx.doi.org/10.1128/AAC.02341-15DOI Listing

Publication Analysis

Top Keywords

heptad repeat
16
alanine-substituted analogs
16
antiendotoxin activities
12
corresponding alanine-substituted
12
piscidin-1
11
analogs
9
amino acid
8
repeat sequence
8
antiendotoxin activity
8
biological activity
8

Similar Publications

Norleucine Substitution Enhances Self-Assembly of a Lanthanide-Binding Polypeptide Coiled Coil.

J Pept Sci

February 2025

Institute of Chemistry, College of Science, National Science Complex, Regidor Street, University of the Philippines-Diliman, Quezon City, Metro Manila, Philippines.

A de novo lanthanide-binding coiled-coil polypeptide (MB1-2) was previously reported to self-assemble into a trimeric complex upon addition of Tb with a micromolar range dissociation constant. This study examines the effect of substitution of hydrophobic residues in heptad repeats of MB1-2 on the thermodynamic stability of the resulting Tb-peptide complex. Substitution of isoleucine to norleucine in each heptad repeat was assessed considering the greater accessible surface area of the latter and predicted increased hydrophobic interaction.

View Article and Find Full Text PDF

Complementary Packing of α-Helices Revisited.

Methods Mol Biol

November 2024

Institute of Protein Research, Russian Academy of Sciences, Moscow, Russia.

The packing of α-helices in proteins is determined by both the principle of close packing and the chemical nature of side chains. As shown, amphipathic α-helices having continuous hydrophobic stripes on their surfaces can be packed against each other in two main ways referred to here as face-to-face and side-by-side manners. Three types of the minimal hydrophobic stripes produced by the heptad (7-residue), undecatad (11-residue), and 4-residue repeats in the sequence have been analyzed and their role in packing of α-helices has been considered.

View Article and Find Full Text PDF

Protein mimics of fusion core from SARS-CoV-1 can inhibit SARS-CoV-2 entry.

Biochem Biophys Res Commun

December 2024

Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China. Electronic address:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the genus Betacoronavirus (subgenus Sarbecovirus) and shares significant genomic and phylogenetic similarities with severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1). SARS-CoV-2 infection occurs through membrane fusion between the virus and host cell membranes, which is facilitated by the spike glycoprotein subunit 2 (S2). The folding of three heptad-repeat regions 1 (HR1) into a central trimeric core structure, along with the binding of three heptad-repeat regions 2 (HR2) in an antiparallel manner within the groove formed between the HR1 regions, which provides the driving force for membrane fusion.

View Article and Find Full Text PDF

Myosin storage myopathy (MSM) is a rare skeletal muscle disorder caused by mutations in the slow muscle/β-cardiac myosin heavy chain (MHC) gene. MSM missense mutations frequently disrupt the tail's stabilizing heptad repeat motif. Disease hallmarks include subsarcolemmal hyaline-like β-MHC aggregates, muscle weakness and, occasionally, cardiomyopathy.

View Article and Find Full Text PDF

The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!