A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data. | LitMetric

Because of the rapid economic growth in China, many regions are subjected to severe particulate matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and uncertainty of air pollution can provide considerable benefits when developing risk assessments and environmental policies. The uncertainty assessment methods currently in use include the sequential indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation (STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used as the experimental dataset. Based on the number of STSIS procedures, we assessed various types of mapping uncertainties, including single-location uncertainties over one day and multiple days and multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with the SIS technique indicate that a better performance was obtained with the STSIS method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828716PMC
http://dx.doi.org/10.1038/srep24335DOI Listing

Publication Analysis

Top Keywords

uncertainty assessment
12
sequential indicator
12
assessment pm25
8
spatiotemporal sequential
8
indicator simulation
8
multi-temporal data
8
uncertainties day
8
day multiple
8
multiple days
8
uncertainty
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!