A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prevention of vein graft intimal hyperplasia with photochemical tissue passivation. | LitMetric

Prevention of vein graft intimal hyperplasia with photochemical tissue passivation.

J Vasc Surg

Division of Plastic and Reconstructive Surgery, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, Mass. Electronic address:

Published: January 2017

Objective: Saphenous vein is the conduit of choice for bypass grafting. Saphenous vein grafts have poor long-term patency rates because of intimal hyperplasia (IH) and subsequent accelerated atherosclerosis. One of the primary triggers of IH is endothelial injury resulting from excessive dilation of the vein after exposure to arterial pressures. Photochemical tissue passivation (PTP) is a technology that cross-links adventitial collagen by a light-activated process, which limits dilation by improving vessel compliance. The objective of this study was to investigate whether PTP limits the development of IH in a rodent venous interposition graft model.

Methods: PTP is accomplished by coating venous adventitia with a photosensitizing dye and exposing it to light. To assess the degree of collagen cross-linking after PTP treatment, a biodegradation assay was performed. Venous interposition grafts were placed in the femoral artery of Sprague-Dawley rats. Rats were euthanized after 4 weeks, and intimal thickness was measured histologically. Vein dilation at the time of the initial procedure was also measured.

Results: Time to digestion was 63 ± 7 minutes for controls, 101 ± 2.4 minutes for rose bengal (RB), and 300 ± 0 minutes for PTP (P < .001 PTP vs control). A total of 37 animals underwent the procedure: 12 PTP, 12 RB only, and 13 untreated controls. Dilation of the graft after clamp release was 99% for control, 65% for RB only, and 19% for PTP-treated (P < .001 PTP vs control). Intimal thickness was 77 ± 59 μm in controls, 60 ± 27 μm in RB only, and 33 ± 28 μm in PTP-treated grafts. There was a statistically significant 57% reduction in intimal thickness after treatment with PTP compared with untreated controls (P = .03).

Conclusions: PTP treatment of venous interposition grafts in a rat model resulted in significant collagen cross-linking, decreased vessel compliance, and significant reduction in IH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvs.2015.11.049DOI Listing

Publication Analysis

Top Keywords

venous interposition
12
intimal thickness
12
ptp
10
intimal hyperplasia
8
photochemical tissue
8
tissue passivation
8
saphenous vein
8
vessel compliance
8
collagen cross-linking
8
ptp treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!