Building Nanostructures with Drugs.

Nano Today

Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou, Henan 450052, China; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, USA.

Published: February 2016

The convergence of nanoscience and drug delivery has prompted the formation of the field of nanomedicine, one that exploits the novel physicochemical and biological properties of nanostructures for improved medical treatments and reduced side effects. Until recently, this nanostructure-mediated strategy considered the drug to be solely a biologically active compound to be delivered, and its potential as a molecular building unit remained largely unexplored. A growing trend within nanomedicine has been the use of drug molecules to build well-defined nanostructures of various sizes and shapes. This strategy allows for the creation of self-delivering supramolecular nanomedicines containing a high and fixed drug content. Through rational design of the number and type of the drug incorporated, the resulting nanostructures can be tailored to assume various morphologies (e.g. nanospheres, rods, nanofibers, or nanotubes) for a particular mode of administration such as systemic, topical, and local delivery. This review covers the recent advances in this rapidly developing field, with the aim of providing an in-depth evaluation of the exciting opportunities that this new field could create to improve the current clinical practice of nanomedicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821422PMC
http://dx.doi.org/10.1016/j.nantod.2015.11.003DOI Listing

Publication Analysis

Top Keywords

drug
5
building nanostructures
4
nanostructures drugs
4
drugs convergence
4
convergence nanoscience
4
nanoscience drug
4
drug delivery
4
delivery prompted
4
prompted formation
4
formation field
4

Similar Publications

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Novel genetic insight for psoriasis: integrative genome-wide analyses in 863 080 individuals and proteome-wide Mendelian randomization.

Brief Bioinform

November 2024

Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.

Psoriasis affects a significant proportion of the worldwide population and causes an extremely heavy psychological and physical burden. The existing therapeutic schemes have many deficiencies such as limited efficacies and various side effects. Therefore, novel ways of treating psoriasis are urgently needed.

View Article and Find Full Text PDF

Background: The implementation of large language models (LLMs), such as BART (Bidirectional and Auto-Regressive Transformers) and GPT-4, has revolutionized the extraction of insights from unstructured text. These advancements have expanded into health care, allowing analysis of social media for public health insights. However, the detection of drug discontinuation events (DDEs) remains underexplored.

View Article and Find Full Text PDF

Chitosan-Functionalized Fluorescent Calcium Carbonate Nanoparticle Loaded with Methotrexate: Future Theranostics for Triple Negative Breast Cancer.

ACS Biomater Sci Eng

January 2025

Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.

Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.

View Article and Find Full Text PDF

Retrosynthesis is a strategy to analyze the synthetic routes for target molecules in medicinal chemistry. However, traditional retrosynthesis predictions performed by chemists and rule-based expert systems struggle to adapt to the vast chemical space of real-world scenarios. Artificial intelligence (AI) has revolutionized retrosynthesis prediction in recent decades, significantly increasing the accuracy and diversity of predictions for target compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!